ppsspp/GPU/Common/TextureCacheCommon.cpp
Unknown W. Brackets 28a07c70c6 Explicitly download rendered cluts.
This avoids triggering logic that tries to get the sizing right, or
optimize frequent copies.  CLUTs often get estimated wrong, so it's better
to copy just the correct range, always.
2016-01-04 21:29:03 -08:00

338 lines
11 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include "Common/MemoryUtil.h"
#include "Core/Config.h"
#include "Core/Reporting.h"
#include "Core/System.h"
#include "GPU/Common/FramebufferCommon.h"
#include "GPU/Common/TextureCacheCommon.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Common/ShaderId.h"
#include "GPU/Common/GPUStateUtils.h"
#include "GPU/GPUState.h"
#include "GPU/GPUInterface.h"
// Ugly.
extern int g_iNumVideos;
TextureCacheCommon::TextureCacheCommon()
: nextTexture_(nullptr),
clutLastFormat_(0xFFFFFFFF), clutTotalBytes_(0), clutMaxBytes_(0), clutRenderAddress_(0xFFFFFFFF) {
// TODO: Clamp down to 256/1KB? Need to check mipmapShareClut and clamp loadclut.
clutBufRaw_ = (u32 *)AllocateAlignedMemory(1024 * sizeof(u32), 16); // 4KB
clutBufConverted_ = (u32 *)AllocateAlignedMemory(1024 * sizeof(u32), 16); // 4KB
// Zap so we get consistent behavior if the game fails to load some of the CLUT.
memset(clutBufRaw_, 0, 1024 * sizeof(u32));
memset(clutBufConverted_, 0, 1024 * sizeof(u32));
// This is 5MB of temporary storage. Might be possible to shrink it.
tmpTexBuf32.resize(1024 * 512); // 2MB
tmpTexBuf16.resize(1024 * 512); // 1MB
tmpTexBufRearrange.resize(1024 * 512); // 2MB
}
TextureCacheCommon::~TextureCacheCommon() {
FreeAlignedMemory(clutBufConverted_);
FreeAlignedMemory(clutBufRaw_);
}
bool TextureCacheCommon::SetOffsetTexture(u32 offset) {
return false;
}
int TextureCacheCommon::AttachedDrawingHeight() {
if (nextTexture_) {
if (nextTexture_->framebuffer) {
return nextTexture_->framebuffer->height;
}
u16 dim = nextTexture_->dim;
const u8 dimY = dim >> 8;
return 1 << dimY;
}
return 0;
}
void TextureCacheCommon::GetSamplingParams(int &minFilt, int &magFilt, bool &sClamp, bool &tClamp, float &lodBias, u8 maxLevel) {
minFilt = gstate.texfilter & 0x7;
magFilt = (gstate.texfilter>>8) & 1;
sClamp = gstate.isTexCoordClampedS();
tClamp = gstate.isTexCoordClampedT();
bool noMip = (gstate.texlevel & 0xFFFFFF) == 0x000001 || (gstate.texlevel & 0xFFFFFF) == 0x100001 ; // Fix texlevel at 0
if (maxLevel == 0) {
// Enforce no mip filtering, for safety.
minFilt &= 1; // no mipmaps yet
lodBias = 0.0f;
} else {
// Texture lod bias should be signed.
lodBias = (float)(int)(s8)((gstate.texlevel >> 16) & 0xFF) / 16.0f;
}
if (g_Config.iTexFiltering == TEX_FILTER_LINEAR_VIDEO && g_iNumVideos > 0 && (gstate.getTextureDimension(0) & 0xF) >= 9) {
magFilt |= 1;
minFilt |= 1;
}
if (g_Config.iTexFiltering == TEX_FILTER_LINEAR && (!gstate.isColorTestEnabled() || IsColorTestTriviallyTrue())) {
if (!gstate.isAlphaTestEnabled() || IsAlphaTestTriviallyTrue()) {
magFilt |= 1;
minFilt |= 1;
}
}
bool forceNearest = g_Config.iTexFiltering == TEX_FILTER_NEAREST;
// Force Nearest when color test enabled and rendering resolution greater than 480x272
if ((gstate.isColorTestEnabled() && !IsColorTestTriviallyTrue()) && g_Config.iInternalResolution != 1 && gstate.isModeThrough()) {
// Some games use 0 as the color test color, which won't be too bad if it bleeds.
// Fuchsia and green, etc. are the problem colors.
if (gstate.getColorTestRef() != 0) {
forceNearest = true;
}
}
if (forceNearest) {
magFilt &= ~1;
minFilt &= ~1;
}
if (!g_Config.bMipMap || noMip) {
minFilt &= 1;
}
}
void TextureCacheCommon::NotifyFramebuffer(u32 address, VirtualFramebuffer *framebuffer, FramebufferNotification msg) {
// Must be in VRAM so | 0x04000000 it is. Also, ignore memory mirrors.
// These checks are mainly to reduce scanning all textures.
const u32 addr = (address | 0x04000000) & 0x3F9FFFFF;
const u32 bpp = framebuffer->format == GE_FORMAT_8888 ? 4 : 2;
const u64 cacheKey = (u64)addr << 32;
// If it has a clut, those are the low 32 bits, so it'll be inside this range.
// Also, if it's a subsample of the buffer, it'll also be within the FBO.
const u64 cacheKeyEnd = cacheKey + ((u64)(framebuffer->fb_stride * framebuffer->height * bpp) << 32);
// The first mirror starts at 0x04200000 and there are 3. We search all for framebuffers.
const u64 mirrorCacheKey = (u64)0x04200000 << 32;
const u64 mirrorCacheKeyEnd = (u64)0x04800000 << 32;
switch (msg) {
case NOTIFY_FB_CREATED:
case NOTIFY_FB_UPDATED:
// Ensure it's in the framebuffer cache.
if (std::find(fbCache_.begin(), fbCache_.end(), framebuffer) == fbCache_.end()) {
fbCache_.push_back(framebuffer);
}
for (auto it = cache.lower_bound(cacheKey), end = cache.upper_bound(cacheKeyEnd); it != end; ++it) {
AttachFramebuffer(&it->second, addr, framebuffer);
}
// Let's assume anything in mirrors is fair game to check.
for (auto it = cache.lower_bound(mirrorCacheKey), end = cache.upper_bound(mirrorCacheKeyEnd); it != end; ++it) {
const u64 mirrorlessKey = it->first & ~0x0060000000000000ULL;
// Let's still make sure it's in the cache range.
if (mirrorlessKey >= cacheKey && mirrorlessKey <= cacheKeyEnd) {
AttachFramebuffer(&it->second, addr, framebuffer);
}
}
break;
case NOTIFY_FB_DESTROYED:
fbCache_.erase(std::remove(fbCache_.begin(), fbCache_.end(), framebuffer), fbCache_.end());
for (auto it = cache.lower_bound(cacheKey), end = cache.upper_bound(cacheKeyEnd); it != end; ++it) {
DetachFramebuffer(&it->second, addr, framebuffer);
}
for (auto it = cache.lower_bound(mirrorCacheKey), end = cache.upper_bound(mirrorCacheKeyEnd); it != end; ++it) {
const u64 mirrorlessKey = it->first & ~0x0060000000000000ULL;
// Let's still make sure it's in the cache range.
if (mirrorlessKey >= cacheKey && mirrorlessKey <= cacheKeyEnd) {
DetachFramebuffer(&it->second, addr, framebuffer);
}
}
break;
}
}
void TextureCacheCommon::NotifyConfigChanged() {
int scaleFactor;
// 0 means automatic texture scaling, up to 5x, based on resolution.
if (g_Config.iTexScalingLevel == 0) {
scaleFactor = g_Config.iInternalResolution;
// Automatic resolution too? Okay.
if (scaleFactor == 0) {
if (!g_Config.IsPortrait()) {
scaleFactor = (PSP_CoreParameter().pixelWidth + 479) / 480;
} else {
scaleFactor = (PSP_CoreParameter().pixelHeight + 479) / 480;
}
}
// Mobile devices don't get the higher scale factors, too expensive. Very rough way to decide though...
if (!gstate_c.Supports(GPU_IS_MOBILE)) {
scaleFactor = std::min(5, scaleFactor);
} else {
scaleFactor = std::min(3, scaleFactor);
}
} else {
scaleFactor = g_Config.iTexScalingLevel;
}
if (!gstate_c.Supports(GPU_SUPPORTS_OES_TEXTURE_NPOT)) {
// Reduce the scale factor to a power of two (e.g. 2 or 4) if textures must be a power of two.
while ((scaleFactor & (scaleFactor - 1)) != 0) {
--scaleFactor;
}
}
// Just in case, small display with auto resolution or something.
if (scaleFactor <= 0) {
scaleFactor = 1;
}
standardScaleFactor_ = scaleFactor;
}
void TextureCacheCommon::LoadClut(u32 clutAddr, u32 loadBytes) {
clutTotalBytes_ = loadBytes;
clutRenderAddress_ = 0xFFFFFFFF;
if (Memory::IsValidAddress(clutAddr)) {
if (Memory::IsVRAMAddress(clutAddr)) {
// Clear the uncached bit, etc. to match framebuffers.
const u32 clutFramebufAddr = clutAddr & 0x3FFFFFFF;
for (size_t i = 0, n = fbCache_.size(); i < n; ++i) {
auto framebuffer = fbCache_[i];
if ((framebuffer->fb_address | 0x04000000) == clutFramebufAddr) {
framebuffer->last_frame_clut = gpuStats.numFlips;
framebuffer->usageFlags |= FB_USAGE_CLUT;
clutRenderAddress_ = framebuffer->fb_address;
}
}
}
// It's possible for a game to (successfully) access outside valid memory.
u32 bytes = Memory::ValidSize(clutAddr, loadBytes);
if (clutRenderAddress_ != 0xFFFFFFFF && !g_Config.bDisableSlowFramebufEffects) {
DownloadFramebufferForClut(clutAddr, bytes);
if (bytes < loadBytes) {
memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes);
}
} else {
#ifdef _M_SSE
int numBlocks = bytes / 16;
if (bytes == loadBytes) {
const __m128i *source = (const __m128i *)Memory::GetPointerUnchecked(clutAddr);
__m128i *dest = (__m128i *)clutBufRaw_;
for (int i = 0; i < numBlocks; i++, source += 2, dest += 2) {
__m128i data1 = _mm_loadu_si128(source);
__m128i data2 = _mm_loadu_si128(source + 1);
_mm_store_si128(dest, data1);
_mm_store_si128(dest + 1, data2);
}
} else {
Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes);
if (bytes < loadBytes) {
memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes);
}
}
#else
Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes);
if (bytes < loadBytes) {
memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes);
}
#endif
}
} else {
memset(clutBufRaw_, 0x00, loadBytes);
}
// Reload the clut next time.
clutLastFormat_ = 0xFFFFFFFF;
clutMaxBytes_ = std::max(clutMaxBytes_, loadBytes);
}
void *TextureCacheCommon::UnswizzleFromMem(const u8 *texptr, u32 bufw, u32 height, u32 bytesPerPixel) {
const u32 rowWidth = (bytesPerPixel > 0) ? (bufw * bytesPerPixel) : (bufw / 2);
const u32 pitch = rowWidth / 4;
const int bxc = rowWidth / 16;
int byc = (height + 7) / 8;
if (byc == 0)
byc = 1;
u32 ydest = 0;
if (rowWidth >= 16) {
u32 *ydestp = tmpTexBuf32.data();
// The most common one, so it gets an optimized implementation.
DoUnswizzleTex16(texptr, ydestp, bxc, byc, pitch, rowWidth);
} else if (rowWidth == 8) {
const u32 *src = (const u32 *) texptr;
for (int by = 0; by < byc; by++) {
for (int n = 0; n < 8; n++, ydest += 2) {
tmpTexBuf32[ydest + 0] = *src++;
tmpTexBuf32[ydest + 1] = *src++;
src += 2; // skip two u32
}
}
} else if (rowWidth == 4) {
const u32 *src = (const u32 *) texptr;
for (int by = 0; by < byc; by++) {
for (int n = 0; n < 8; n++, ydest++) {
tmpTexBuf32[ydest] = *src++;
src += 3;
}
}
} else if (rowWidth == 2) {
const u16 *src = (const u16 *) texptr;
for (int by = 0; by < byc; by++) {
for (int n = 0; n < 4; n++, ydest++) {
u16 n1 = src[0];
u16 n2 = src[8];
tmpTexBuf32[ydest] = (u32)n1 | ((u32)n2 << 16);
src += 16;
}
}
} else if (rowWidth == 1) {
const u8 *src = (const u8 *) texptr;
for (int by = 0; by < byc; by++) {
for (int n = 0; n < 2; n++, ydest++) {
u8 n1 = src[ 0];
u8 n2 = src[16];
u8 n3 = src[32];
u8 n4 = src[48];
tmpTexBuf32[ydest] = (u32)n1 | ((u32)n2 << 8) | ((u32)n3 << 16) | ((u32)n4 << 24);
src += 64;
}
}
}
return tmpTexBuf32.data();
}
void *TextureCacheCommon::RearrangeBuf(void *inBuf, u32 inRowBytes, u32 outRowBytes, int h, bool allowInPlace) {
const u8 *read = (const u8 *)inBuf;
void *outBuf = inBuf;
u8 *write = (u8 *)inBuf;
if (outRowBytes > inRowBytes || !allowInPlace) {
write = (u8 *)tmpTexBufRearrange.data();
outBuf = tmpTexBufRearrange.data();
}
for (int y = 0; y < h; y++) {
memmove(write, read, outRowBytes);
read += inRowBytes;
write += outRowBytes;
}
return outBuf;
}