ppsspp/Core/MIPS/RiscV/RiscVRegCache.cpp
2023-09-24 16:28:29 -07:00

442 lines
13 KiB
C++

// Copyright (c) 2023- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#ifndef offsetof
#include <cstddef>
#endif
#include "Common/CPUDetect.h"
#include "Core/MIPS/IR/IRInst.h"
#include "Core/MIPS/IR/IRAnalysis.h"
#include "Core/MIPS/RiscV/RiscVRegCache.h"
#include "Core/MIPS/JitCommon/JitState.h"
#include "Core/Reporting.h"
using namespace RiscVGen;
using namespace RiscVJitConstants;
RiscVRegCache::RiscVRegCache(MIPSComp::JitOptions *jo)
: IRNativeRegCacheBase(jo) {
// TODO: Update these when using RISC-V V.
config_.totalNativeRegs = NUM_RVGPR + NUM_RVFPR;
config_.mapUseVRegs = false;
config_.mapFPUSIMD = false;
}
void RiscVRegCache::Init(RiscVEmitter *emitter) {
emit_ = emitter;
}
void RiscVRegCache::SetupInitialRegs() {
IRNativeRegCacheBase::SetupInitialRegs();
// Treat R_ZERO a bit specially, but it's basically static alloc too.
nrInitial_[R_ZERO].mipsReg = MIPS_REG_ZERO;
nrInitial_[R_ZERO].normalized32 = true;
// Since we also have a fixed zero, mark it as a static allocation.
mrInitial_[MIPS_REG_ZERO].loc = MIPSLoc::REG_IMM;
mrInitial_[MIPS_REG_ZERO].nReg = R_ZERO;
mrInitial_[MIPS_REG_ZERO].imm = 0;
mrInitial_[MIPS_REG_ZERO].isStatic = true;
}
const int *RiscVRegCache::GetAllocationOrder(MIPSLoc type, MIPSMap flags, int &count, int &base) const {
base = X0;
if (type == MIPSLoc::REG) {
// X8 and X9 are the most ideal for static alloc because they can be used with compression.
// Otherwise we stick to saved regs - might not be necessary.
static const int allocationOrder[] = {
X8, X9, X12, X13, X14, X15, X5, X6, X7, X16, X17, X18, X19, X20, X21, X22, X23, X28, X29, X30, X31,
};
static const int allocationOrderStaticAlloc[] = {
X12, X13, X14, X15, X5, X6, X7, X16, X17, X21, X22, X23, X28, X29, X30, X31,
};
if (jo_->useStaticAlloc) {
count = ARRAY_SIZE(allocationOrderStaticAlloc);
return allocationOrderStaticAlloc;
} else {
count = ARRAY_SIZE(allocationOrder);
return allocationOrder;
}
} else if (type == MIPSLoc::FREG) {
// F8 through F15 are used for compression, so they are great.
static const int allocationOrder[] = {
F8, F9, F10, F11, F12, F13, F14, F15,
F0, F1, F2, F3, F4, F5, F6, F7,
F16, F17, F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30, F31,
};
count = ARRAY_SIZE(allocationOrder);
return allocationOrder;
} else {
_assert_msg_(false, "Allocation order not yet implemented");
count = 0;
return nullptr;
}
}
const RiscVRegCache::StaticAllocation *RiscVRegCache::GetStaticAllocations(int &count) const {
static const StaticAllocation allocs[] = {
{ MIPS_REG_SP, X8, MIPSLoc::REG, true },
{ MIPS_REG_V0, X9, MIPSLoc::REG },
{ MIPS_REG_V1, X18, MIPSLoc::REG },
{ MIPS_REG_A0, X19, MIPSLoc::REG },
{ MIPS_REG_RA, X20, MIPSLoc::REG },
};
if (jo_->useStaticAlloc) {
count = ARRAY_SIZE(allocs);
return allocs;
}
return IRNativeRegCacheBase::GetStaticAllocations(count);
}
void RiscVRegCache::EmitLoadStaticRegisters() {
int count;
const StaticAllocation *allocs = GetStaticAllocations(count);
for (int i = 0; i < count; i++) {
int offset = GetMipsRegOffset(allocs[i].mr);
if (allocs[i].pointerified && jo_->enablePointerify) {
emit_->LWU((RiscVReg)allocs[i].nr, CTXREG, offset);
emit_->ADD((RiscVReg)allocs[i].nr, (RiscVReg)allocs[i].nr, MEMBASEREG);
} else {
emit_->LW((RiscVReg)allocs[i].nr, CTXREG, offset);
}
}
}
void RiscVRegCache::EmitSaveStaticRegisters() {
int count;
const StaticAllocation *allocs = GetStaticAllocations(count);
// This only needs to run once (by Asm) so checks don't need to be fast.
for (int i = 0; i < count; i++) {
int offset = GetMipsRegOffset(allocs[i].mr);
emit_->SW((RiscVReg)allocs[i].nr, CTXREG, offset);
}
}
void RiscVRegCache::FlushBeforeCall() {
// These registers are not preserved by function calls.
// They match between X0 and F0, conveniently.
for (int i = 5; i <= 7; ++i) {
FlushNativeReg(X0 + i);
FlushNativeReg(F0 + i);
}
for (int i = 10; i <= 17; ++i) {
FlushNativeReg(X0 + i);
FlushNativeReg(F0 + i);
}
for (int i = 28; i <= 31; ++i) {
FlushNativeReg(X0 + i);
FlushNativeReg(F0 + i);
}
}
bool RiscVRegCache::IsNormalized32(IRReg mipsReg) {
_dbg_assert_(IsValidGPR(mipsReg));
if (XLEN == 32)
return true;
if (mr[mipsReg].loc == MIPSLoc::REG || mr[mipsReg].loc == MIPSLoc::REG_IMM) {
return nr[mr[mipsReg].nReg].normalized32;
}
return false;
}
RiscVGen::RiscVReg RiscVRegCache::Normalize32(IRReg mipsReg, RiscVGen::RiscVReg destReg) {
_dbg_assert_(IsValidGPR(mipsReg));
_dbg_assert_(destReg == INVALID_REG || (destReg > X0 && destReg <= X31));
RiscVReg reg = (RiscVReg)mr[mipsReg].nReg;
if (XLEN == 32)
return reg;
switch (mr[mipsReg].loc) {
case MIPSLoc::IMM:
case MIPSLoc::MEM:
_assert_msg_(false, "Cannot normalize an imm or mem");
return INVALID_REG;
case MIPSLoc::REG:
case MIPSLoc::REG_IMM:
if (!nr[mr[mipsReg].nReg].normalized32) {
if (destReg == INVALID_REG) {
emit_->SEXT_W((RiscVReg)mr[mipsReg].nReg, (RiscVReg)mr[mipsReg].nReg);
nr[mr[mipsReg].nReg].normalized32 = true;
nr[mr[mipsReg].nReg].pointerified = false;
} else {
emit_->SEXT_W(destReg, (RiscVReg)mr[mipsReg].nReg);
}
} else if (destReg != INVALID_REG) {
emit_->SEXT_W(destReg, (RiscVReg)mr[mipsReg].nReg);
}
break;
case MIPSLoc::REG_AS_PTR:
_dbg_assert_(nr[mr[mipsReg].nReg].normalized32 == false);
if (destReg == INVALID_REG) {
// If we can pointerify, SEXT_W will be enough.
if (!jo_->enablePointerify)
AdjustNativeRegAsPtr(mr[mipsReg].nReg, false);
emit_->SEXT_W((RiscVReg)mr[mipsReg].nReg, (RiscVReg)mr[mipsReg].nReg);
mr[mipsReg].loc = MIPSLoc::REG;
nr[mr[mipsReg].nReg].normalized32 = true;
nr[mr[mipsReg].nReg].pointerified = false;
} else if (!jo_->enablePointerify) {
emit_->SUB(destReg, (RiscVReg)mr[mipsReg].nReg, MEMBASEREG);
emit_->SEXT_W(destReg, destReg);
} else {
emit_->SEXT_W(destReg, (RiscVReg)mr[mipsReg].nReg);
}
break;
default:
_assert_msg_(false, "Should not normalize32 floats");
break;
}
return destReg == INVALID_REG ? reg : destReg;
}
RiscVReg RiscVRegCache::TryMapTempImm(IRReg r) {
_dbg_assert_(IsValidGPR(r));
// If already mapped, no need for a temporary.
if (IsGPRMapped(r)) {
return R(r);
}
if (mr[r].loc == MIPSLoc::IMM) {
if (mr[r].imm == 0) {
return R_ZERO;
}
// Try our luck - check for an exact match in another rvreg.
for (int i = 0; i < TOTAL_MAPPABLE_IRREGS; ++i) {
if (mr[i].loc == MIPSLoc::REG_IMM && mr[i].imm == mr[r].imm) {
// Awesome, let's just use this reg.
return (RiscVReg)mr[i].nReg;
}
}
}
return INVALID_REG;
}
RiscVReg RiscVRegCache::GetAndLockTempGPR() {
RiscVReg reg = (RiscVReg)AllocateReg(MIPSLoc::REG, MIPSMap::INIT);
if (reg != INVALID_REG) {
nr[reg].tempLockIRIndex = irIndex_;
}
return reg;
}
RiscVReg RiscVRegCache::MapWithFPRTemp(const IRInst &inst) {
return (RiscVReg)MapWithTemp(inst, MIPSLoc::FREG);
}
RiscVReg RiscVRegCache::MapGPR(IRReg mipsReg, MIPSMap mapFlags) {
_dbg_assert_(IsValidGPR(mipsReg));
// Okay, not mapped, so we need to allocate an RV register.
IRNativeReg nreg = MapNativeReg(MIPSLoc::REG, mipsReg, 1, mapFlags);
return (RiscVReg)nreg;
}
RiscVReg RiscVRegCache::MapGPRAsPointer(IRReg reg) {
return (RiscVReg)MapNativeRegAsPointer(reg);
}
RiscVReg RiscVRegCache::MapFPR(IRReg mipsReg, MIPSMap mapFlags) {
_dbg_assert_(IsValidFPR(mipsReg));
_dbg_assert_(mr[mipsReg + 32].loc == MIPSLoc::MEM || mr[mipsReg + 32].loc == MIPSLoc::FREG);
IRNativeReg nreg = MapNativeReg(MIPSLoc::FREG, mipsReg + 32, 1, mapFlags);
if (nreg != -1)
return (RiscVReg)nreg;
return INVALID_REG;
}
void RiscVRegCache::AdjustNativeRegAsPtr(IRNativeReg nreg, bool state) {
RiscVReg r = (RiscVReg)(X0 + nreg);
_assert_(r >= X0 && r <= X31);
if (state) {
#ifdef MASKED_PSP_MEMORY
// This destroys the value...
_dbg_assert_(!nr[nreg].isDirty);
emit_->SLLIW(r, r, 2);
emit_->SRLIW(r, r, 2);
emit_->ADD(r, r, MEMBASEREG);
#else
// Clear the top bits to be safe.
if (cpu_info.RiscV_Zba) {
emit_->ADD_UW(r, r, MEMBASEREG);
} else {
_assert_(XLEN == 64);
emit_->SLLI(r, r, 32);
emit_->SRLI(r, r, 32);
emit_->ADD(r, r, MEMBASEREG);
}
#endif
nr[nreg].normalized32 = false;
} else {
#ifdef MASKED_PSP_MEMORY
_dbg_assert_(!nr[nreg].isDirty);
#endif
emit_->SUB(r, r, MEMBASEREG);
nr[nreg].normalized32 = false;
}
}
bool RiscVRegCache::IsNativeRegCompatible(IRNativeReg nreg, MIPSLoc type, MIPSMap flags, int lanes) {
// No special flags except VREG, skip the check for a little speed.
if (type != MIPSLoc::VREG)
return true;
return IRNativeRegCacheBase::IsNativeRegCompatible(nreg, type, flags, lanes);
}
void RiscVRegCache::LoadNativeReg(IRNativeReg nreg, IRReg first, int lanes) {
RiscVReg r = (RiscVReg)(X0 + nreg);
_dbg_assert_(r > X0);
_dbg_assert_(first != MIPS_REG_ZERO);
if (r <= X31) {
_assert_(lanes == 1 || (lanes == 2 && first == IRREG_LO));
if (lanes == 1)
emit_->LW(r, CTXREG, GetMipsRegOffset(first));
else if (lanes == 2)
emit_->LD(r, CTXREG, GetMipsRegOffset(first));
else
_assert_(false);
nr[nreg].normalized32 = true;
} else {
_dbg_assert_(r >= F0 && r <= F31);
// Multilane not yet supported.
_assert_(lanes == 1);
if (mr[first].loc == MIPSLoc::FREG) {
emit_->FL(32, r, CTXREG, GetMipsRegOffset(first));
} else {
_assert_msg_(mr[first].loc == MIPSLoc::FREG, "Cannot store this type: %d", (int)mr[first].loc);
}
}
}
void RiscVRegCache::StoreNativeReg(IRNativeReg nreg, IRReg first, int lanes) {
RiscVReg r = (RiscVReg)(X0 + nreg);
_dbg_assert_(r > X0);
_dbg_assert_(first != MIPS_REG_ZERO);
if (r <= X31) {
// Multilane not yet supported.
_assert_(lanes == 1 || (lanes == 2 && first == IRREG_LO));
_assert_(mr[first].loc == MIPSLoc::REG || mr[first].loc == MIPSLoc::REG_IMM);
if (lanes == 1)
emit_->SW(r, CTXREG, GetMipsRegOffset(first));
else if (lanes == 2)
emit_->SD(r, CTXREG, GetMipsRegOffset(first));
else
_assert_(false);
} else {
_dbg_assert_(r >= F0 && r <= F31);
// Multilane not yet supported.
_assert_(lanes == 1);
if (mr[first].loc == MIPSLoc::FREG) {
emit_->FS(32, r, CTXREG, GetMipsRegOffset(first));
} else {
_assert_msg_(mr[first].loc == MIPSLoc::FREG, "Cannot store this type: %d", (int)mr[first].loc);
}
}
}
void RiscVRegCache::SetNativeRegValue(IRNativeReg nreg, uint32_t imm) {
RiscVReg r = (RiscVReg)(X0 + nreg);
if (r == R_ZERO && imm == 0)
return;
_dbg_assert_(r > X0 && r <= X31);
emit_->LI(r, (int32_t)imm);
// We always use 32-bit immediates, so this is normalized now.
nr[nreg].normalized32 = true;
}
void RiscVRegCache::StoreRegValue(IRReg mreg, uint32_t imm) {
_assert_(IsValidGPRNoZero(mreg));
// Try to optimize using a different reg.
RiscVReg storeReg = INVALID_REG;
// Zero is super easy.
if (imm == 0) {
storeReg = R_ZERO;
} else {
// Could we get lucky? Check for an exact match in another rvreg.
for (int i = 0; i < TOTAL_MAPPABLE_IRREGS; ++i) {
if (mr[i].loc == MIPSLoc::REG_IMM && mr[i].imm == imm) {
// Awesome, let's just store this reg.
storeReg = (RiscVReg)mr[i].nReg;
break;
}
}
if (storeReg == INVALID_REG) {
emit_->LI(SCRATCH1, imm);
storeReg = SCRATCH1;
}
}
emit_->SW(storeReg, CTXREG, GetMipsRegOffset(mreg));
}
RiscVReg RiscVRegCache::R(IRReg mipsReg) {
_dbg_assert_(IsValidGPR(mipsReg));
_dbg_assert_(mr[mipsReg].loc == MIPSLoc::REG || mr[mipsReg].loc == MIPSLoc::REG_IMM);
if (mr[mipsReg].loc == MIPSLoc::REG || mr[mipsReg].loc == MIPSLoc::REG_IMM) {
return (RiscVReg)mr[mipsReg].nReg;
} else {
ERROR_LOG_REPORT(JIT, "Reg %i not in riscv reg", mipsReg);
return INVALID_REG; // BAAAD
}
}
RiscVReg RiscVRegCache::RPtr(IRReg mipsReg) {
_dbg_assert_(IsValidGPR(mipsReg));
_dbg_assert_(mr[mipsReg].loc == MIPSLoc::REG || mr[mipsReg].loc == MIPSLoc::REG_IMM || mr[mipsReg].loc == MIPSLoc::REG_AS_PTR);
if (mr[mipsReg].loc == MIPSLoc::REG_AS_PTR) {
return (RiscVReg)mr[mipsReg].nReg;
} else if (mr[mipsReg].loc == MIPSLoc::REG || mr[mipsReg].loc == MIPSLoc::REG_IMM) {
int rv = mr[mipsReg].nReg;
_dbg_assert_(nr[rv].pointerified);
if (nr[rv].pointerified) {
return (RiscVReg)mr[mipsReg].nReg;
} else {
ERROR_LOG(JIT, "Tried to use a non-pointer register as a pointer");
return INVALID_REG;
}
} else {
ERROR_LOG_REPORT(JIT, "Reg %i not in riscv reg", mipsReg);
return INVALID_REG; // BAAAD
}
}
RiscVReg RiscVRegCache::F(IRReg mipsReg) {
_dbg_assert_(IsValidFPR(mipsReg));
_dbg_assert_(mr[mipsReg + 32].loc == MIPSLoc::FREG);
if (mr[mipsReg + 32].loc == MIPSLoc::FREG) {
return (RiscVReg)mr[mipsReg + 32].nReg;
} else {
ERROR_LOG_REPORT(JIT, "Reg %i not in riscv reg", mipsReg);
return INVALID_REG; // BAAAD
}
}