scummvm/engines/bladerunner/obstacles.cpp

563 lines
15 KiB
C++
Raw Normal View History

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "bladerunner/obstacles.h"
#include "bladerunner/bladerunner.h"
2018-03-17 16:14:48 +01:00
#include "bladerunner/savefile.h"
#include "bladerunner/scene.h" // for debug
#include "bladerunner/view.h"
#include "common/debug.h"
#define WITHIN_TOLERANCE(a, b) (((a) - 0.009) < (b) && ((a) + 0.009) > (b))
2018-03-17 16:14:48 +01:00
namespace BladeRunner {
Obstacles::Obstacles(BladeRunnerEngine *vm) {
_vm = vm;
2018-03-17 16:14:48 +01:00
_polygons = new Polygon[kPolygonCount];
_polygonsBackup = new Polygon[kPolygonCount];
_vertices = new Vector2[kVertexCount];
clear();
}
Obstacles::~Obstacles() {
clear();
2018-04-04 22:41:12 +02:00
delete[] _polygons;
_polygons = nullptr;
delete[] _polygonsBackup;
_polygonsBackup = nullptr;
delete[] _vertices;
_vertices = nullptr;
}
void Obstacles::clear() {
for (int i = 0; i < kPolygonCount; i++) {
_polygons[i].isPresent = false;
_polygons[i].verticeCount = 0;
2018-03-17 16:14:48 +01:00
for (int j = 0; j < kPolygonVertexCount; j++) {
_polygons[i].vertices[j].x = 0.0f;
_polygons[i].vertices[j].y = 0.0f;
}
}
_verticeCount = 0;
_backup = false;
_count = 0;
}
#define IN_RANGE(v, start, end) ((start) <= (v) && (v) <= (end))
/*
* This function is limited to finding intersections between
* horizontal and vertical lines!
*
* The original implementation is more general but obstacle
* polygons only consists of horizontal and vertical lines,
* and this is more numerically stable.
*/
bool Obstacles::lineLineIntersection(LineSegment a, LineSegment b, Vector2 *intersection) {
assert(a.start.x == a.end.x || a.start.y == a.end.y);
assert(b.start.x == b.end.x || b.start.y == b.end.y);
if (a.start.x > a.end.x) SWAP(a.start.x, a.end.x);
if (a.start.y > a.end.y) SWAP(a.start.y, a.end.y);
if (b.start.x > b.end.x) SWAP(b.start.x, b.end.x);
if (b.start.y > b.end.y) SWAP(b.start.y, b.end.y);
if (a.start.x == a.end.x && b.start.y == b.end.y && IN_RANGE(a.start.x, b.start.x, b.end.x) && IN_RANGE(b.start.y, a.start.y, a.end.y)) {
// A is vertical, B is horizontal
2018-05-07 19:31:53 +02:00
*intersection = Vector2(a.start.x, b.start.y);
return true;
}
if (a.start.y == a.end.y && b.start.x == b.end.x && IN_RANGE(a.start.y, b.start.y, b.end.y) && IN_RANGE(b.start.x, a.start.x, a.end.x)) {
// A is horizontal, B is vertical
2018-05-07 19:31:53 +02:00
*intersection = Vector2(b.start.x, a.start.y);
return true;
}
return false;
}
bool Obstacles::linePolygonIntersection(LineSegment lineA, VertexType lineAType, Polygon *polyB, Vector2 *intersectionPoint, int *intersectionIndex) {
bool hasIntersection = false;
float nearestIntersectionDistance = 0.0f;
for (int i = 0; i != polyB->verticeCount; ++i) {
LineSegment lineB;
lineB.start = polyB->vertices[i];
lineB.end = polyB->vertices[(i+1) % polyB->verticeCount];
VertexType lineBType = polyB->vertexType[i];
Vector2 newIntersectionPoint;
if (lineLineIntersection(lineA, lineB, &newIntersectionPoint)) {
2018-05-07 19:31:53 +02:00
if ((lineAType == TOP_RIGHT && lineBType == TOP_LEFT)
|| (lineAType == BOTTOM_RIGHT && lineBType == TOP_RIGHT)
|| (lineAType == BOTTOM_LEFT && lineBType == BOTTOM_RIGHT)
|| (lineAType == TOP_LEFT && lineBType == BOTTOM_LEFT)
) {
if (!WITHIN_TOLERANCE(lineB.end.x, intersectionPoint->x)
|| !WITHIN_TOLERANCE(lineB.end.y, intersectionPoint->y)) {
if (newIntersectionPoint != *intersectionPoint) {
float newIntersectionDistance = getLength(lineA.start.x, lineA.start.y, newIntersectionPoint.x, newIntersectionPoint.y);
if (!hasIntersection || newIntersectionDistance < nearestIntersectionDistance) {
hasIntersection = true;
nearestIntersectionDistance = newIntersectionDistance;
*intersectionPoint = newIntersectionPoint;
*intersectionIndex = i;
}
}
}
}
}
}
return hasIntersection;
}
/*
* Polygons vertices are defined in clock-wise order
* starting at the top-most, right-most corner.
*
* When merging two polygons, we start at the top-most, right-most vertex.
* The polygon with this vertex starts is the primary polygon.
* We follow the edges until we find an intersection with the secondary polygon,
* in which case we switch primary and secondary and continue following the new edges.
*
* Luckily the first two polygons added in RC01 (A, then B) are laid as as below,
* making an ideal test case.
*
* Merge order: (B0,B1) (B1,B2) (B2,J) (J,A2) (A2,A3) (A3,A0) (A0,I) (I,B0)
*
* 0,0 ---> x
* |
* | primary
* | B 0 ----- 1
* | | |
* | A 0 --I-- 1 |
* | | | | |
* | | 3 --J-- 2
* | | |
* | 3 ----- 2
* | secondary
* v y
*/
bool Obstacles::mergePolygons(Polygon &polyA, Polygon &polyB) {
bool flagDidMergePolygons = false;
Polygon polyMerged;
polyMerged.rect = merge(polyA.rect, polyB.rect);
Polygon *polyPrimary, *polySecondary;
if (polyA.rect.y0 < polyB.rect.y0 || (polyA.rect.y0 == polyB.rect.y0 && polyA.rect.x0 < polyB.rect.x0)) {
polyPrimary = &polyA;
polySecondary = &polyB;
} else {
polyPrimary = &polyB;
polySecondary = &polyA;
}
Vector2 intersectionPoint;
LineSegment polyLine;
bool flagAddVertexToVertexList = true;
bool flagDidFindIntersection = false;
int vertIndex = 0;
Polygon *startingPolygon = polyPrimary;
int flagDone = false;
while (!flagDone) {
VertexType polyPrimaryType;
polyLine.start = flagDidFindIntersection ? intersectionPoint : polyPrimary->vertices[vertIndex];
polyLine.end = polyPrimary->vertices[(vertIndex + 1) % polyPrimary->verticeCount];
// TODO(madmoose): How does this work when adding a new intersection point?
polyPrimaryType = polyPrimary->vertexType[vertIndex];
if (flagAddVertexToVertexList) {
assert(polyMerged.verticeCount < kPolygonVertexCount);
polyMerged.vertices[polyMerged.verticeCount] = polyLine.start;
polyMerged.vertexType[polyMerged.verticeCount] = polyPrimaryType;
polyMerged.verticeCount++;
}
flagAddVertexToVertexList = true;
int polySecondaryIntersectionIndex = -1;
if (linePolygonIntersection(polyLine, polyPrimaryType, polySecondary, &intersectionPoint, &polySecondaryIntersectionIndex)) {
if (WITHIN_TOLERANCE(intersectionPoint.x, polyLine.start.x) && WITHIN_TOLERANCE(intersectionPoint.y, polyLine.start.y)) {
warning("Set: %d Scene: %d", _vm->_scene->getSetId(), _vm->_scene->getSceneId());
assert(0 && "Report instances of this to madmoose!");
flagAddVertexToVertexList = false;
polyMerged.verticeCount--; // TODO(madmoose): How would this work?
} else {
// Obstacles::nop
}
vertIndex = polySecondaryIntersectionIndex;
flagDidFindIntersection = true;
SWAP(polyPrimary, polySecondary);
flagDidMergePolygons = true;
} else {
vertIndex = (vertIndex + 1) % polyPrimary->verticeCount;
flagDidFindIntersection = false;
}
if (polyPrimary->vertices[vertIndex] == startingPolygon->vertices[0]) {
flagDone = true;
}
}
if (flagDidMergePolygons) {
*startingPolygon = polyMerged;
startingPolygon->isPresent = true;
if (startingPolygon == &polyA) {
polyB.isPresent = false;
} else {
polyA.isPresent = false;
}
}
return flagDidMergePolygons;
}
void Obstacles::add(Rect rect) {
int polygonIndex = findEmptyPolygon();
if (polygonIndex < 0) {
return;
}
rect.expand(12.0f);
rect.trunc_2_decimals();
Polygon &poly = _polygons[polygonIndex];
poly.rect = rect;
poly.vertices[0] = Vector2(rect.x0, rect.y0);
poly.vertexType[0] = TOP_LEFT;
poly.vertices[1] = Vector2(rect.x1, rect.y0);
poly.vertexType[1] = TOP_RIGHT;
poly.vertices[2] = Vector2(rect.x1, rect.y1);
poly.vertexType[2] = BOTTOM_RIGHT;
poly.vertices[3] = Vector2(rect.x0, rect.y1);
poly.vertexType[3] = BOTTOM_LEFT;
poly.isPresent = true;
poly.verticeCount = 4;
restart:
for (int i = 0; i < kPolygonCount; ++i) {
Polygon &polyA = _polygons[i];
if (!polyA.isPresent) {
continue;
}
for (int j = i+1; j < kPolygonCount; ++j) {
Polygon &polyB = _polygons[j];
if (!polyB.isPresent) {
continue;
}
if (!overlaps(polyA.rect, polyB.rect)) {
continue;
}
if (mergePolygons(polyA, polyB)) {
goto restart;
}
}
}
}
int Obstacles::findEmptyPolygon() const {
for (int i = 0; i < kPolygonCount; i++) {
if (!_polygons[i].isPresent) {
return i;
}
}
return -1;
}
float Obstacles::getLength(float x0, float z0, float x1, float z1) {
if (x0 == x1) {
return fabs(z1 - z0);
}
return fabs(x1 - x0);
}
bool Obstacles::find(const Vector3 &from, const Vector3 &to, Vector3 *next) const {
//TODO
*next = to;
return true;
}
bool Obstacles::findIntersectionNearest(int polygonIndex, Vector2 from, Vector2 to,
int *outVertexIndex, float *outDistance, Vector2 *out) const
{
float minDistance = 0.0f;
Vector2 minIntersection;
int minVertexIndex = -1;
bool hasDistance = false;
for (int i = 0; i < _polygons[polygonIndex].verticeCount; ++i) {
int nextIndex = (i + 1) % _polygons[polygonIndex].verticeCount;
Vector2 *vertices = _polygons[polygonIndex].vertices;
Vector2 intersection;
bool intersects = lineIntersection(from, to, vertices[i], vertices[nextIndex], &intersection);
if (intersects) {
float distance2 = distance(from, intersection);
if (!hasDistance || distance2 < minDistance) {
minDistance = distance2;
minIntersection = intersection;
minVertexIndex = i;
hasDistance = true;
}
}
}
*outDistance = minDistance;
*outVertexIndex = minVertexIndex;
*out = minIntersection;
return minVertexIndex != -1;
}
bool Obstacles::findIntersectionFarthest(int polygonIndex, Vector2 from, Vector2 to,
int *outVertexIndex, float *outDistance, Vector2 *out) const
{
float maxDistance = 0.0f;
Vector2 maxIntersection;
int maxVertexIndex = -1;
bool hasDistance = false;
for (int i = 0; i < _polygons[polygonIndex].verticeCount; ++i) {
int nextIndex = (i + 1) % _polygons[polygonIndex].verticeCount;
Vector2 *vertices = _polygons[polygonIndex].vertices;
Vector2 intersection;
bool intersects = lineIntersection(from, to, vertices[i], vertices[nextIndex], &intersection);
if (intersects) {
float distance2 = distance(from, intersection);
if (!hasDistance || distance2 > maxDistance) {
maxDistance = distance2;
maxIntersection = intersection;
maxVertexIndex = i;
hasDistance = true;
}
}
}
*outDistance = maxDistance;
*outVertexIndex = maxVertexIndex;
*out = maxIntersection;
return maxVertexIndex != -1;
}
bool Obstacles::findPolygonVerticeByXZ(int *polygonIndex, int *verticeIndex, int *verticeCount, float x, float z) const {
*polygonIndex = -1;
*verticeIndex = -1;
*verticeCount = -1;
for (int i = 0; i != kPolygonCount; ++i) {
if (!_polygons[i].isPresent || _polygons[i].verticeCount == 0) {
continue;
}
for (int j = 0; j != kPolygonVertexCount; ++j) {
if (_polygons[i].vertices[j].x == x && _polygons[i].vertices[j].y == z) {
*polygonIndex = i;
*verticeIndex = j;
*verticeCount = _polygons[i].verticeCount;
return true;
}
}
}
return false;
}
bool Obstacles::findPolygonVerticeByXZWithinTolerance(float x, float z, int *polygonIndex, int *verticeIndex) const {
*polygonIndex = -1;
*verticeIndex = -1;
for (int i = 0; i != kPolygonCount; ++i) {
if (!_polygons[i].isPresent || _polygons[i].verticeCount == 0) {
continue;
}
for (int j = 0; j != kPolygonVertexCount; ++j) {
if (WITHIN_TOLERANCE(_polygons[i].vertices[j].x, x)) {
if (WITHIN_TOLERANCE(_polygons[i].vertices[j].y, z)) {
*polygonIndex = i;
*verticeIndex = j;
return true;
}
}
}
}
return false;
}
void Obstacles::clearVertices() {
_verticeCount = 0;
}
void Obstacles::copyVerticesReverse() {
}
void Obstacles::copyVertices() {
}
void Obstacles::backup() {
for (int i = 0; i != kPolygonCount; ++i) {
_polygonsBackup[i].isPresent = false;
}
int count = 0;
for (int i = 0; i != kPolygonCount; ++i) {
if (_polygons[i].isPresent) {
_polygonsBackup[count] = _polygons[i];
++count;
}
}
for (int i = 0; i != kPolygonCount; ++i) {
_polygons[i] = _polygonsBackup[count];
}
_count = count;
_backup = true;
}
void Obstacles::restore() {
for (int i = 0; i != kPolygonCount; ++i) {
_polygons[i].isPresent = false;
}
for (int i = 0; i != kPolygonCount; ++i) {
_polygons[i] = _polygonsBackup[i];
}
}
void Obstacles::save(SaveFileWriteStream &f) {
f.writeBool(_backup);
f.writeInt(_count);
2018-03-17 16:14:48 +01:00
for (int i = 0; i < _count; ++i) {
Polygon &p = _polygonsBackup[i];
f.writeBool(p.isPresent);
f.writeInt(p.verticeCount);
f.writeFloat(p.rect.x0);
f.writeFloat(p.rect.y0);
f.writeFloat(p.rect.x1);
f.writeFloat(p.rect.y1);
2018-03-17 16:14:48 +01:00
for (int j = 0; j < kPolygonVertexCount; ++j) {
f.writeVector2(p.vertices[j]);
2018-03-17 16:14:48 +01:00
}
for (int j = 0; j < kPolygonVertexCount; ++j) {
f.writeInt(p.vertexType[j]);
2018-03-17 16:14:48 +01:00
}
}
for (int i = 0; i < kVertexCount; ++i) {
f.writeVector2(_vertices[i]);
2018-03-17 16:14:48 +01:00
}
f.writeInt(_verticeCount);
}
void Obstacles::load(SaveFileReadStream &f) {
for (int i = 0; i < kPolygonCount; ++i) {
_polygons[i].isPresent = false;
_polygons[i].verticeCount = 0;
_polygonsBackup[i].isPresent = false;
_polygonsBackup[i].verticeCount = 0;
}
_backup = f.readBool();
_count = f.readInt();
for (int i = 0; i < _count; ++i) {
Polygon &p = _polygonsBackup[i];
p.isPresent = f.readBool();
p.verticeCount = f.readInt();
p.rect.x0 = f.readFloat();
p.rect.y0 = f.readFloat();
p.rect.x1 = f.readFloat();
p.rect.y1 = f.readFloat();
for (int j = 0; j < kPolygonVertexCount; ++j) {
p.vertices[j] = f.readVector2();
}
for (int j = 0; j < kPolygonVertexCount; ++j) {
p.vertexType[j] = (VertexType)f.readInt();
}
}
for (int i = 0; i < kPolygonCount; ++i) {
_polygons[i] = _polygonsBackup[i];
}
for (int i = 0; i < kVertexCount; ++i) {
_vertices[i] = f.readVector2();
}
_verticeCount = f.readInt();
2018-03-17 16:14:48 +01:00
}
void Obstacles::draw() {
for (int i = 0; i != kPolygonCount; ++i) {
if (!_polygons[i].isPresent) {
continue;
}
Vector3 p0 = _vm->_view->calculateScreenPosition(Vector3(
_polygons[i].vertices[_polygons[i].verticeCount - 1].x,
0,
_polygons[i].vertices[_polygons[i].verticeCount - 1].y
));
for (int j = 0; j != _polygons[i].verticeCount; ++j) {
Vector3 p1 = _vm->_view->calculateScreenPosition(Vector3(
_polygons[i].vertices[j].x,
0.0f,
_polygons[i].vertices[j].y
));
_vm->_surfaceFront.drawLine(p0.x, p0.y, p1.x, p1.y, 0x7FE0);
p0 = p1;
}
}
}
} // End of namespace BladeRunner