scummvm/engines/sword25/math/walkregion.cpp

418 lines
13 KiB
C++
Raw Normal View History

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
2010-08-06 13:13:25 +00:00
/*
* This code is based on Broken Sword 2.5 engine
*
* Copyright (c) Malte Thiesen, Daniel Queteschiner and Michael Elsdoerfer
*
* Licensed under GNU GPL v2
*
*/
#include "sword25/kernel/kernel.h"
#include "sword25/kernel/inputpersistenceblock.h"
#include "sword25/kernel/outputpersistenceblock.h"
#include "sword25/math/walkregion.h"
#include "sword25/math/line.h"
#define BS_LOG_PREFIX "WALKREGION"
namespace Sword25 {
// -----------------------------------------------------------------------------
// Constants
// -----------------------------------------------------------------------------
static const int infinity = 0x7fffffff;
// -----------------------------------------------------------------------------
// Constructor / Destructor
// -----------------------------------------------------------------------------
WalkRegion::WalkRegion() {
m_Type = RT_WALKREGION;
}
// -----------------------------------------------------------------------------
WalkRegion::WalkRegion(InputPersistenceBlock &Reader, uint Handle) :
Region(Reader, Handle) {
m_Type = RT_WALKREGION;
Unpersist(Reader);
}
// -----------------------------------------------------------------------------
WalkRegion::~WalkRegion() {
}
// -----------------------------------------------------------------------------
bool WalkRegion::Init(const Polygon &Contour, const Common::Array<Polygon> *pHoles) {
// Default initialisation of the region
if (!Region::Init(Contour, pHoles)) return false;
// Prepare structures for pathfinding
InitNodeVector();
ComputeVisibilityMatrix();
// Signal success
return true;
}
// -----------------------------------------------------------------------------
bool WalkRegion::QueryPath(Vertex StartPoint, Vertex EndPoint, BS_Path &Path) {
BS_ASSERT(Path.empty());
// If the start and finish are identical, no path can be found trivially
if (StartPoint == EndPoint) return true;
2010-08-06 13:13:25 +00:00
// Ensure that the start and finish are valid and find new start points if either
// are outside the polygon
if (!CheckAndPrepareStartAndEnd(StartPoint, EndPoint)) return false;
// If between the start and point a line of sight exists, then it can be returned.
2010-08-06 13:13:25 +00:00
if (IsLineOfSight(StartPoint, EndPoint)) {
Path.push_back(StartPoint);
Path.push_back(EndPoint);
return true;
}
return FindPath(StartPoint, EndPoint, Path);
}
// -----------------------------------------------------------------------------
struct DijkstraNode {
typedef Common::Array<DijkstraNode> Container;
typedef Container::iterator Iter;
typedef Container::const_iterator ConstIter;
DijkstraNode() : Cost(infinity), Chosen(false) {};
2010-08-06 13:13:25 +00:00
ConstIter ParentIter;
int Cost;
bool Chosen;
};
static void InitDijkstraNodes(DijkstraNode::Container &DijkstraNodes, const Region &Region,
const Vertex &Start, const Common::Array<Vertex> &Nodes) {
// Allocate sufficient space in the array
DijkstraNodes.resize(Nodes.size());
// Initialise all the nodes which are visible from the starting node
DijkstraNode::Iter DijkstraIter = DijkstraNodes.begin();
for (Common::Array<Vertex>::const_iterator NodesIter = Nodes.begin();
2010-08-06 13:13:25 +00:00
NodesIter != Nodes.end(); NodesIter++, DijkstraIter++) {
(*DijkstraIter).ParentIter = DijkstraNodes.end();
2010-08-06 13:13:25 +00:00
if (Region.IsLineOfSight(*NodesIter, Start))(*DijkstraIter).Cost = (*NodesIter).Distance(Start);
}
BS_ASSERT(DijkstraIter == DijkstraNodes.end());
}
2010-08-06 13:13:25 +00:00
static DijkstraNode::Iter ChooseClosestNode(DijkstraNode::Container &Nodes) {
DijkstraNode::Iter ClosestNodeInter = Nodes.end();
int MinCost = infinity;
for (DijkstraNode::Iter iter = Nodes.begin(); iter != Nodes.end(); iter++) {
if (!(*iter).Chosen && (*iter).Cost < MinCost) {
MinCost = (*iter).Cost;
ClosestNodeInter = iter;
}
}
return ClosestNodeInter;
}
static void RelaxNodes(DijkstraNode::Container &Nodes,
2010-08-06 13:13:25 +00:00
const Common::Array< Common::Array<int> > &VisibilityMatrix,
const DijkstraNode::ConstIter &CurNodeIter) {
// All the successors of the current node that have not been chosen will be
// inserted into the boundary node list, and the cost will be updated if
// a shorter path has been found to them.
int CurNodeIndex = CurNodeIter - Nodes.begin();
for (uint i = 0; i < Nodes.size(); i++) {
int Cost = VisibilityMatrix[CurNodeIndex][i];
if (!Nodes[i].Chosen && Cost != infinity) {
int TotalCost = (*CurNodeIter).Cost + Cost;
if (TotalCost < Nodes[i].Cost) {
Nodes[i].ParentIter = CurNodeIter;
Nodes[i].Cost = TotalCost;
}
}
}
}
static void RelaxEndPoint(const Vertex &CurNodePos,
2010-08-06 13:13:25 +00:00
const DijkstraNode::ConstIter &CurNodeIter,
const Vertex &EndPointPos,
2010-08-06 13:13:25 +00:00
DijkstraNode &EndPoint,
const Region &Region) {
if (Region.IsLineOfSight(CurNodePos, EndPointPos)) {
int TotalCost = (*CurNodeIter).Cost + CurNodePos.Distance(EndPointPos);
if (TotalCost < EndPoint.Cost) {
EndPoint.ParentIter = CurNodeIter;
EndPoint.Cost = TotalCost;
}
}
}
bool WalkRegion::FindPath(const Vertex &Start, const Vertex &End, BS_Path &Path) const {
// This is an implementation of Dijkstra's algorithm
// Initialise edge node list
DijkstraNode::Container DijkstraNodes;
InitDijkstraNodes(DijkstraNodes, *this, Start, m_Nodes);
// The end point is treated separately, since it does not exist in the visibility graph
DijkstraNode EndPoint;
// Since a node is selected each round from the node list, and can never be selected again
// after that, the maximum number of loop iterations is limited by the number of nodes
for (uint i = 0; i < m_Nodes.size(); i++) {
// Determine the nearest edge node in the node list
DijkstraNode::Iter NodeInter = ChooseClosestNode(DijkstraNodes);
// If no free nodes are absent from the edge node list, there is no path from start
// to end node. This case should never occur, since the number of loop passes is
// limited, but etter safe than sorry
if (NodeInter == DijkstraNodes.end()) return false;
// If the destination point is closer than the point cost, scan can stop
(*NodeInter).Chosen = true;
if (EndPoint.Cost <= (*NodeInter).Cost) {
// Insert the end point in the list
Path.push_back(End);
// The list is done in reverse order and inserted into the path
DijkstraNode::ConstIter CurNode = EndPoint.ParentIter;
while (CurNode != DijkstraNodes.end()) {
BS_ASSERT((*CurNode).Chosen);
Path.push_back(m_Nodes[CurNode - DijkstraNodes.begin()]);
CurNode = (*CurNode).ParentIter;
}
// The starting point is inserted into the path
Path.push_back(Start);
// The nodes of the path must be untwisted, as they were extracted in reverse order.
// This step could be saved if the path from end to the beginning was desired
ReverseArray<Vertex>(Path);
return true;
}
// Relaxation step for nodes of the graph, and perform the end nodes
RelaxNodes(DijkstraNodes, m_VisibilityMatrix, NodeInter);
RelaxEndPoint(m_Nodes[NodeInter - DijkstraNodes.begin()], NodeInter, End, EndPoint, *this);
}
// If the loop has been completely run through, all the nodes have been chosen, and still
// no path was found. There is therefore no path available
return false;
}
// -----------------------------------------------------------------------------
void WalkRegion::InitNodeVector() {
// Empty the Node list
m_Nodes.clear();
// Determine the number of nodes
int NodeCount = 0;
{
for (uint i = 0; i < m_Polygons.size(); i++)
NodeCount += m_Polygons[i].VertexCount;
}
// Knoten-Vector f<>llen
m_Nodes.reserve(NodeCount);
{
for (uint j = 0; j < m_Polygons.size(); j++)
for (int i = 0; i < m_Polygons[j].VertexCount; i++)
m_Nodes.push_back(m_Polygons[j].Vertecies[i]);
}
}
// -----------------------------------------------------------------------------
void WalkRegion::ComputeVisibilityMatrix() {
2010-08-06 13:13:25 +00:00
// Initialise visibility matrix
m_VisibilityMatrix = Common::Array< Common::Array <int> >();
for (uint idx = 0; idx < m_Nodes.size(); ++idx) {
Common::Array<int> arr;
for (uint idx2 = 0; idx2 < m_Nodes.size(); ++idx2)
arr.push_back(infinity);
m_VisibilityMatrix.push_back(arr);
}
2010-08-06 13:13:25 +00:00
// Calculate visibility been vertecies
for (uint j = 0; j < m_Nodes.size(); ++j) {
for (uint i = j; i < m_Nodes.size(); ++i) {
if (IsLineOfSight(m_Nodes[i], m_Nodes[j])) {
// There is a line of sight, so save the distance between the two
int Distance = m_Nodes[i].Distance(m_Nodes[j]);
m_VisibilityMatrix[i][j] = Distance;
m_VisibilityMatrix[j][i] = Distance;
} else {
// There is no line of sight, so save infinity as the distance
m_VisibilityMatrix[i][j] = infinity;
m_VisibilityMatrix[j][i] = infinity;
}
}
}
}
// -----------------------------------------------------------------------------
bool WalkRegion::CheckAndPrepareStartAndEnd(Vertex &Start, Vertex &End) const {
if (!IsPointInRegion(Start)) {
Vertex NewStart = FindClosestRegionPoint(Start);
// Check to make sure the point is really in the region. If not, stop with an error
if (!IsPointInRegion(NewStart)) {
BS_LOG_ERRORLN("Constructed startpoint ((%d,%d) from (%d,%d)) is not inside the region.",
2010-08-06 13:13:25 +00:00
NewStart.X, NewStart.Y,
Start.X, Start.Y);
return false;
}
Start = NewStart;
}
// If the destination is outside the region, a point is determined that is within the region,
// and that is used as an endpoint instead
if (!IsPointInRegion(End)) {
Vertex NewEnd = FindClosestRegionPoint(End);
// Make sure that the determined point is really within the region
if (!IsPointInRegion(NewEnd)) {
BS_LOG_ERRORLN("Constructed endpoint ((%d,%d) from (%d,%d)) is not inside the region.",
2010-08-06 13:13:25 +00:00
NewEnd.X, NewEnd.Y,
End.X, End.Y);
return false;
}
End = NewEnd;
}
// Signal success
return true;
}
// -----------------------------------------------------------------------------
void WalkRegion::SetPos(int X, int Y) {
// Calculate the difference between old and new position
Vertex Delta(X - m_Position.X, Y - m_Position.Y);
// Move all the nodes
for (uint i = 0; i < m_Nodes.size(); i++) m_Nodes[i] += Delta;
// Move regions
Region::SetPos(X, Y);
}
// -----------------------------------------------------------------------------
bool WalkRegion::Persist(OutputPersistenceBlock &Writer) {
bool Result = true;
// Persist the parent region
Result &= Region::Persist(Writer);
// Persist the nodes
Writer.Write(m_Nodes.size());
Common::Array<Vertex>::const_iterator It = m_Nodes.begin();
while (It != m_Nodes.end()) {
Writer.Write(It->X);
Writer.Write(It->Y);
++It;
}
// Persist the visibility matrix
Writer.Write(m_VisibilityMatrix.size());
Common::Array< Common::Array<int> >::const_iterator RowIter = m_VisibilityMatrix.begin();
while (RowIter != m_VisibilityMatrix.end()) {
Writer.Write(RowIter->size());
Common::Array<int>::const_iterator ColIter = RowIter->begin();
while (ColIter != RowIter->end()) {
Writer.Write(*ColIter);
++ColIter;
}
++RowIter;
}
return Result;
}
// -----------------------------------------------------------------------------
bool WalkRegion::Unpersist(InputPersistenceBlock &Reader) {
bool Result = true;
// The parent object was already loaded in the constructor of BS_Region, so at
// this point only the additional data from BS_WalkRegion needs to be loaded
// Node load
uint NodeCount;
Reader.Read(NodeCount);
m_Nodes.clear();
m_Nodes.resize(NodeCount);
Common::Array<Vertex>::iterator It = m_Nodes.begin();
while (It != m_Nodes.end()) {
Reader.Read(It->X);
Reader.Read(It->Y);
++It;
}
// Visibility matrix load
uint RowCount;
Reader.Read(RowCount);
m_VisibilityMatrix.clear();
m_VisibilityMatrix.resize(RowCount);
Common::Array< Common::Array<int> >::iterator RowIter = m_VisibilityMatrix.begin();
while (RowIter != m_VisibilityMatrix.end()) {
uint ColCount;
Reader.Read(ColCount);
RowIter->resize(ColCount);
Common::Array<int>::iterator ColIter = RowIter->begin();
while (ColIter != RowIter->end()) {
Reader.Read(*ColIter);
++ColIter;
}
++RowIter;
}
return Result && Reader.IsGood();
}
} // End of namespace Sword25