scummvm/graphics/scaler/edge.cpp

4627 lines
122 KiB
C++
Raw Normal View History

/* ScummVM - Scumm Interpreter
* Copyright (C) 2001 Ludvig Strigeus
* Copyright (C) 2001-2006 The ScummVM project
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/
/*
* Another edge-directed 2x/3x anti-aliasing scaler for ScummVM
*
* Author: Eric A. Welsh
*
* INTERPOLATE/Q_INTERPOLATE macros taken from HQ2x/HQ3x scalers
* (Authors: Maxim Stepin and Max Horn)
*
*
* Sharp, clean, anti-aliased image with very few artifacts.
* Detects and appropriately handles mouse overlays with transparent pixels.
* The Edge3x filter detects unchanged pixels and does not redraw them,
* resulting in a considerable gain in speed when there are even a moderate
* number of unchanged pixels. Edge3x and Edge2x anti-alias using nearest-
* neighbor methods. Edge2xi interpolates.
*
* The really slow speed is mainly due to the edge detection algorithm. In
* order to accurately detect the edge direction (and thus avoid artifacts
* caused by mis-detection), the edge detection and refinement process is
* rather long and involved. Speed must be sacrificed in order to avoid
* artifacts :( If anyone is tempted to optimize using lower precision
* math, such as converting some of the double math to fixed-point integer,
* or lowering the number of significant bits used in the existing integer
* math to squeeze it into accelerated 16-bit vector instructions, please do
* not do this. Any loss in precision results in visibly degraded image
* quality. I've tried integer conversions of various double math, and tried
* reducing the number of significant digits I use in the integer math, and
* it always results in less accurate edge detection and lower image quality.
* If you're going to optimize, make sure you don't sacrifice any precision.
* There may be a few places I could change the variable types from
* int32 to int16 without introducing overflows, though. I should also
* probably change some of the flags and arrays to bools or chars, rather
* than ints, since they are only 0 or 1.
*
* It's a bit slow... but ScummVM runs most things fine on my 1.53 GHz Athlon.
* Increasing the Win32 thread priority can help by forcing Windows not to
* twiddle its thumbs and idle as much during heavy CPU load. The Dig
* cutscene when the asteroid is activated is a little jerky, pans/fades in
* Amazon Queen and Beneath a Steel Sky are slow. Faster machines probably
* won't have a problem. I remember a time when my home machine was too slow
* to run SNES emulators with 2xSaI filters, so I don't think speed is such a
* big issue here. It won't be too long before the average home computer is
* plenty fast enough to run this filter.
*
*/
/*
* Notes on handling overlays, mouse, transparencies, etc.:
*
* As I write this, the SDL backend does not call different filters based on
* whether or not the bitmaps contain transparency. Bitmaps with transparency
* need to be treated differently. 1) Interpolation needs to be disabled,
* since interpolating with transparent pixels produces ugly smears around the
* transparent areas. 2) Transparent pixels need to be treated differently
* during edge detection, so that they appear to be as if they were colors
* that would give maximal contrast in the current 3x3 window.
*
* Currently, the SDL backend calls anti-aliasing resize filters to either
* resize the game screen or resize the mouse. The filter stores the src
* array bounds whenever the width and height of the area to be resized are
* equal to the width and height of the current game screen. If the current
* src array is outside these bounds, then it is assumed that the mouse or
* menu overlay is being drawn. This works perfectly for the current SDL
* backend, but it is still a hack. If, in the future, the filter were to
* to be used to resize a transparent overlay with dimensions equal to those
* of the current game screen, that overlay would be resized without any
* special transparency consideration. The same goes for a mouse pointer
* that is equal to the size of the screen, but I don't forsee this ever
* being a problem.... The correct solution would be to rewrite the backends
* to call filters differently depending on whether or not the bitmap contains
* transparent pixels, and whether or not the end result should be
* interpolated or resized using nearest-neighbor. Until then, the array
* bounds checking hack will have to do.
*
*/
#include <math.h>
#include "common/scummsys.h"
#include "common/system.h"
#include "graphics/scaler/edge.h"
/* Randomly XORs one of 2x2 or 3x3 resized pixels in order to indicate
* which pixels have been redrawn. Useful for seeing which areas of
* the screen are being redrawn. Good for seeing dirty rects, full screen
* refreshes, etc.. Also good for seeing if the unchanged pixel detection is
* working correctly or not :)
*/
#define DEBUG_REFRESH_RANDOM_XOR 0 /* debug redraws */
/* Use with DEBUG_REFRESH_RANDOM_XOR. Randomize the borders of the drawing
* area, whether they are unchanged or not. Useful for visualizing the
* borders of the drawing area. You might be surprised at which areas of the
* screen get redraw requests, even areas with absolutely nothing moving,
* or color cycling, or anything that would cause a dirty rect or require a
* redraw....
*/
#define DEBUG_DRAW_REFRESH_BORDERS 0 /* more redraw debug */
#define INCREASE_WIN32_PRIORITY 0 /* 1 for slow CPUs */
#define PARANOID_KNIGHTS 1 /* avoid artifacts */
#define PARANOID_ARROWS 1 /* avoid artifacts */
#define HANDLE_TRANSPARENT_OVERLAYS 1 /* as it says */
#define SIN45 0.7071067811865 /* sin of 45 degrees */
#define GREY_SHIFT 12 /* bit shift for greyscale precision */
#define RGB_SHIFT 13 /* bit shift for RGB precision */
const int16 one_sqrt2 = (int16) (((int16)1<<GREY_SHIFT) / sqrt(2.0) + 0.5);
int16 rgb_table[65536][3] = {0}; /* table lookup for RGB */
int16 greyscale_table[3][65536] = {0}; /* greyscale tables */
int16 *chosen_greyscale; /* pointer to chosen greyscale table */
int16 *bptr_global; /* too awkward to pass variables */
int8 sim_sum; /* sum of similarity matrix */
uint16 div3[189]; /* tables for pixel interpolation */
uint16 div9[567];
int32 max_old_src_size = 0; /* maximum observed rectangle size */
int32 max_overlay_size = 0; /* maximum observed overlay size */
int32 max_old_dst_size = 0;
int32 max_dst_overlay_size = 0;
uint16 *old_src = NULL; /* old src array */
uint16 *old_overlay = NULL; /* holds the old overlay */
uint16 *old_dst = NULL; /* old dst array */
uint16 *old_dst_overlay = NULL; /* old dst overlay array */
int cur_screen_width = 0; /* current game screen w and h */
int cur_screen_height = 0;
int old_screen_width = 0; /* previous game screen w and h */
int old_screen_height = 0;
int cur_dst_screen_width = 0; /* scaled dst w and h */
int cur_dst_screen_height = 0;
int old_dst_screen_width = 0;
int old_dst_screen_height = 0;
int cur_overlay_width = 0;
int cur_overlay_height = 0;
int old_overlay_width = 0;
int old_overlay_height = 0;
int cur_dst_overlay_width = 0;
int cur_dst_overlay_height = 0;
int old_dst_overlay_width = 0;
int old_dst_overlay_height = 0;
int max_scale = -1; /* used for dst buffer arrays */
int init_flag = 0; /* have the tables been initialized? */
const uint16 *src_addr_min = NULL; /* start of src screen array */
const uint16 *src_addr_max = NULL; /* end of src screen array */
const int16 int32_sqrt3 = (int16) (((int16)1<<GREY_SHIFT) * sqrt(3.0) + 0.5);
#if DEBUG_REFRESH_RANDOM_XOR
/* Random number generators with very good randomness properties, far better
* than the simple linear congruential generator in the ScummVM utils.
* The RNG algorithms were developed by George Marsaglia, as published in his
* "Xorshift RNGs" paper and various USENET postings.
*
* Marsaglia, George, 2003, "Xorshift RNGs", Journal of Statistical Software,
* Volume 7, Issue 14
*
* Note the comments in the code below about how many of the triplet and shift
* combinations published in his paper and various USENET postings don't quite
* work as expected (yes, I exhaustively tested all 648 of them with his test
* suite). Only a few "magic" combinations actually produce good random
* numbers. I suspect this is due to the numbers being shifted too far off
* the ends of the registers?
*
* While numbers this highly random are overkill for our purposes, I already
* had this code written for various scientific analysis programs, and I've
* tested the generators with Marsaglia's comprehensive randomness test
* suite, so I know that they have very good randomness. The simple single
* seed algorithm does fail a few minor tests, but it is still LOADS better
* than a linear congruential generator. The 4 seed RNG passes all tests
* with flying colors and has a pretty big period to boot. I actually use
* a 4096 seed RNG for my scientific work, but that is MAJOR overkill for
* the simple purposes we require here, so I've not included it :)
*/
uint32 seed0, seed1, seed2, seed3;
/* period 2^32 - 1 */
/* fails Gorilla test, binary rank matrix */
/* the ONLY good triplet and shift combinations out of the list of 648:
*
* 3 7 13 >> >> <<
* 3 7 13 << << >>
* 7 3 13 >> >> <<
* 7 3 13 << << >>
*
* 5 6 13 >> >> <<
* 5 6 13 << << >>
* 6 5 13 >> >> <<
* 6 5 13 << << >> seems to be slightly "better" than the others?
*
* all others, including the "favorite" (13, 17, 5), fail some Monkey tests
*/
uint32 xorshift_32(void)
{
seed0 ^= seed0 << 6;
seed0 ^= seed0 << 5;
seed0 ^= seed0 >> 13;
return(seed0);
}
/* period 2^128 - 1 */
/* None of the other published 2^128-1 xorshift RNGs passed OPERM5 */
uint32 xorshift_128(void)
{
uint32 temp;
temp = (seed0 ^ (seed0 << 20)) ^ (seed1 ^ (seed1 >> 11)) ^
(seed2 ^ (seed2 << 27)) ^ (seed3 ^ (seed3 >> 6));
seed0 = seed1;
seed1 = seed2;
seed2 = seed3;
seed3 = temp;
return (temp);
}
/* return a random fraction over the range [0, 1) */
double dxorshift_128(void)
{
uint32 temp;
temp = (seed0 ^ (seed0 << 20)) ^ (seed1 ^ (seed1 >> 11)) ^
(seed2 ^ (seed2 << 27)) ^ (seed3 ^ (seed3 >> 6));
seed0 = seed1;
seed1 = seed2;
seed2 = seed3;
seed3 = temp;
return (temp / 4294967296.0);
}
void initialize_xorshift_128(uint32 seed)
{
/* seed0 needs to be initialized prior to calling xorshift_32() */
seed0 = seed;
/* initialize with xorshift_32() */
seed0 = xorshift_32();
seed1 = xorshift_32();
seed2 = xorshift_32();
seed3 = xorshift_32();
}
#endif
/*
* Faster than standard double atan(), |error| < 7E-6
*
* Original equation from Ranko Bojanic in StuChat37:
*
* |x| <= 1:
*
* x + A*x3 A = 0.43157974, B = 0.76443945, C = 0.05831938
* ---------------
* 1 + B*x2 + C*x4
*
*
*
* After some optimizations:
*
* |x| <= 1:
*
* x * (E + F*x2) E = 1/C, F = A/C
* ---------------- G = (B/C + sqrt(B2/C2 - 4/C)) / 2
* (G + x2)(H + x2) H = (B/C - sqrt(B2/C2 - 4/C)) / 2
*
* E = 17.14695869537, F = 7.400279975541
* G = 11.63393762882, H = 1.473874045440
*
* |x| > 1: pi/2 -
*
* x * (I + x2) I = A
* ---------------- J = (B + sqrt(B2 - 4C)) / 2
* (J + x2)(K + x2) K = (B - sqrt(B2 - 4C)) / 2
*
* I = 0.43157974
* J = 0.6784840295980, K = 0.0859554204018
*
*/
double fast_atan(double x0)
{
double x2;
double x;
x = fabs(x0);
x2 = x*x;
if (x > 1)
{
x2 = 1.570796326795 -
x * (0.43157974 + x2) /
((0.6784840295980 + x2) * (0.0859554204018 + x2));
if (x0 < 0) return -x2;
return x2;
}
return x0 * (17.14695869537 + 7.400279975541 * x2) /
((11.63393762882 + x2) * (1.473874045440 + x2));
}
/*
* Choose greyscale bitplane to use, return diff array. Exit early and
* return NULL for a block of solid color (all diffs zero).
*
* No matter how you do it, mapping 3 bitplanes into a single greyscale
* bitplane will always result in colors which are very different mapping to
* the same greyscale value. Inevitably, these pixels will appear next to
* each other at some point in some image, and edge detection on a single
* bitplane will behave quite strangely due to them having the same or nearly
* the same greyscale values. Calculating distances between pixels using all
* three RGB bitplanes is *way* too time consuming, so single bitplane
* edge detection is used for speed's sake. In order to try to avoid the
* color mapping problems of using a single bitplane, 3 different greyscale
* mappings are tested for each 3x3 grid, and the one with the most "signal"
* (sum of squares difference from center pixel) is chosen. This usually
* results in useable contrast within the 3x3 grid.
*
* This results in a whopping 25% increase in overall runtime of the filter
* over simply using luma or some other single greyscale bitplane, but it
* does greatly reduce the amount of errors due to greyscale mapping
* problems. I think this is the best compromise between accuracy and
* speed, and is still a lot faster than edge detecting over all three RGB
* bitplanes. The increase in image quality is well worth the speed hit.
*
*/
int16 * choose_greyscale(uint16 *pixels)
{
static int16 greyscale_diffs[3][8];
static int16 bplanes[3][9];
int i, j;
int32 scores[3];
for (i = 0; i < 3; i++)
{
int16 *diff_ptr;
int16 *bptr;
uint16 *pptr;
int16 *grey_ptr;
int16 center;
int32 sum_diffs;
sum_diffs = 0;
grey_ptr = greyscale_table[i];
/* fill the 9 pixel window with greyscale values */
bptr = bplanes[i];
pptr = pixels;
for (j = 9; j; --j)
*bptr++ = grey_ptr[*pptr++];
bptr = bplanes[i];
center = grey_ptr[pixels[4]];
diff_ptr = greyscale_diffs[i];
/* calculate the delta from center pixel */
diff_ptr[0] = bptr[0] - center;
diff_ptr[1] = bptr[1] - center;
diff_ptr[2] = bptr[2] - center;
diff_ptr[3] = bptr[3] - center;
diff_ptr[4] = bptr[5] - center;
diff_ptr[5] = bptr[6] - center;
diff_ptr[6] = bptr[7] - center;
diff_ptr[7] = bptr[8] - center;
/* calculate sum of squares distance */
for (j = 8; j; --j) {
sum_diffs += *diff_ptr * *diff_ptr;
++diff_ptr;
}
scores[i] = sum_diffs;
}
/* choose greyscale with highest score, ties decided in GRB order */
if (scores[1] >= scores[0] && scores[1] >= scores[2])
{
if (!scores[1]) return NULL;
chosen_greyscale = greyscale_table[1];
bptr_global = bplanes[1];
return greyscale_diffs[1];
}
if (scores[0] >= scores[1] && scores[0] >= scores[2])
{
if (!scores[0]) return NULL;
chosen_greyscale = greyscale_table[0];
bptr_global = bplanes[0];
return greyscale_diffs[0];
}
if (!scores[2]) return NULL;
chosen_greyscale = greyscale_table[2];
bptr_global = bplanes[2];
return greyscale_diffs[2];
}
/*
* Calculate the distance between pixels in RGB space. Greyscale isn't
* accurate enough for choosing nearest-neighbors :( Luma-like weighting
* of the individual bitplane distances prior to squaring gives the most
* useful results.
*
*/
int32 calc_pixel_diff_nosqrt(uint16 pixel1, uint16 pixel2)
{
#if 1 /* distance between pixels, weighted by roughly luma proportions */
int32 sum = 0;
int16 *rgb_ptr1 = rgb_table[pixel1];
int16 *rgb_ptr2 = rgb_table[pixel2];
int16 diff;
diff = (*rgb_ptr1++ - *rgb_ptr2++) << 1;
sum += diff * diff;
diff = (*rgb_ptr1++ - *rgb_ptr2++) << 2;
sum += diff * diff;
diff = (*rgb_ptr1 - *rgb_ptr2);
sum += diff * diff;
return sum;
#endif
#if 0 /* distance between pixels, weighted by chosen greyscale proportions */
int32 sum = 0;
int16 *rgb_ptr1 = rgb_table[pixel1];
int16 *rgb_ptr2 = rgb_table[pixel2];
int16 diff;
int r_shift, g_shift, b_shift;
if (chosen_greyscale == greyscale_table[1])
{
r_shift = 1;
g_shift = 2;
b_shift = 0;
}
else if (chosen_greyscale == greyscale_table[0])
{
r_shift = 2;
g_shift = 1;
b_shift = 0;
}
else
{
r_shift = 0;
g_shift = 1;
b_shift = 2;
}
diff = (*rgb_ptr1++ - *rgb_ptr2++) << r_shift;
sum += diff * diff;
diff = (*rgb_ptr1++ - *rgb_ptr2++) << g_shift;
sum += diff * diff;
diff = (*rgb_ptr1 - *rgb_ptr2) << b_shift;
sum += diff * diff;
return sum;
#endif
#if 0 /* distance between pixels, unweighted */
int32 sum = 0;
int16 *rgb_ptr1 = rgb_table[pixel1];
int16 *rgb_ptr2 = rgb_table[pixel2];
int16 diff;
diff = *rgb_ptr1++ - *rgb_ptr2++;
sum += diff * diff;
diff = *rgb_ptr1++ - *rgb_ptr2++;
sum += diff * diff;
diff = *rgb_ptr1 - *rgb_ptr2;
sum += diff * diff;
return sum;
#endif
#if 0 /* use the greyscale directly */
return labs(chosen_greyscale[pixel1] - chosen_greyscale[pixel2]);
#endif
}
/*
* Create vectors of all delta grey values from center pixel, with magnitudes
* ranging from [1.0, 0.0] (zero difference, maximum difference). Find
* the two principle axes of the grid by calculating the eigenvalues and
* eigenvectors of the inertia tensor. Use the eigenvectors to calculate the
* edge direction. In other words, find the angle of the line that optimally
* passes through the 3x3 pattern of pixels.
*
* Return horizontal (-), vertical (|), diagonal (/,\), multi (*), or none '0'
*
* Don't replace any of the double math with integer-based approximations,
* since everything I have tried has lead to slight mis-detection errors.
*
*/
int find_principle_axis(uint16 *pixels, int16 *diffs, int16 *bplane,
int8 *sim,
int32 *return_angle)
{
struct xy_point
{
int16 x, y;
};
int i;
int16 centx = 0, centy = 0;
struct xy_point xy_points[9];
int angle;
int reverse_flag = 1;
int16 cutoff;
int16 max_diff;
double x, y;
int32 half_matrix[3] = {0};
double eigenval1, eigenval2;
double best_val;
double a, b, c;
double ratio;
int32 scale;
/* absolute value of differences */
for (i = 0; i < 8; i++)
diffs[i] = labs(diffs[i]);
/* find the max difference */
max_diff = *diffs;
for (i = 1; i < 8; i++)
if (diffs[i] > max_diff) max_diff = diffs[i];
/* exit early on uniform window */
/* already taken care of earlier elsewhere after greyscale assignment */
/* if (max_diff == 0) return '0'; */
/* normalize the differences */
scale = (1L<<(GREY_SHIFT+GREY_SHIFT)) / max_diff;
for (i = 0; i < 8; i++)
diffs[i] = (diffs[i] * scale + ((int16)1<<(GREY_SHIFT-1))) >> GREY_SHIFT;
/*
* Some pixel patterns need to NOT be reversed, since the pixels of
* interest that form the edge to be detected are off-center.
*
*/
/* calculate yes/no similarity matrix to center pixel */
/* store the number of similar pixels */
cutoff = ((int16)1<<(GREY_SHIFT-3));
for (i = 0, sim_sum = 0; i < 8; i++)
sim_sum += (sim[i] = (diffs[i] < cutoff));
/* don't reverse pattern for off-center knights and sharp corners */
if (sim_sum >= 3 && sim_sum <= 5)
{
/* |. */ /* '- */
if (sim[1] && sim[4] && sim[5] && !sim[3] && !sim[6] &&
(!sim[0] ^ !sim[7]))
reverse_flag = 0;
/* -. */ /* '| */
else if (sim[2] && sim[3] && sim[6] && !sim[1] && !sim[4] &&
(!sim[0] ^ !sim[7]))
reverse_flag = 0;
/* .- */ /* |' */
else if (sim[4] && sim[6] && sim[0] && !sim[1] && !sim[3] &&
(!sim[2] ^ !sim[5]))
reverse_flag = 0;
/* .| */ /* -' */
else if (sim[1] && sim[3] && sim[7] && !sim[4] && !sim[6] &&
(!sim[2] ^ !sim[5]))
reverse_flag = 0;
/* 90 degree corners */
else if (sim_sum == 3)
{
if ((sim[0] && sim[1] && sim[3]) ||
(sim[1] && sim[2] && sim[4]) ||
(sim[3] && sim[5] && sim[6]) ||
(sim[4] && sim[6] && sim[7]))
reverse_flag = 0;
}
}
/* redo similarity array, less stringent for later checks */
cutoff = ((int16)1<<(GREY_SHIFT-1));
for (i = 0, sim_sum = 0; i < 8; i++)
sim_sum += (sim[i] = (diffs[i] < cutoff));
/* center pixel is different from all the others, not an edge */
if (sim_sum == 0) return '0';
/* reverse the difference array, so most similar is closest to 1 */
if (reverse_flag)
{
diffs[0] = ((int16)1<<GREY_SHIFT) - diffs[0];
diffs[1] = ((int16)1<<GREY_SHIFT) - diffs[1];
diffs[2] = ((int16)1<<GREY_SHIFT) - diffs[2];
diffs[3] = ((int16)1<<GREY_SHIFT) - diffs[3];
diffs[4] = ((int16)1<<GREY_SHIFT) - diffs[4];
diffs[5] = ((int16)1<<GREY_SHIFT) - diffs[5];
diffs[6] = ((int16)1<<GREY_SHIFT) - diffs[6];
diffs[7] = ((int16)1<<GREY_SHIFT) - diffs[7];
}
/* scale diagonals for projection onto axes */
diffs[0] = (diffs[0] * one_sqrt2 + ((int16)1<<(GREY_SHIFT-1))) >> GREY_SHIFT;
diffs[2] = (diffs[2] * one_sqrt2 + ((int16)1<<(GREY_SHIFT-1))) >> GREY_SHIFT;
diffs[5] = (diffs[5] * one_sqrt2 + ((int16)1<<(GREY_SHIFT-1))) >> GREY_SHIFT;
diffs[7] = (diffs[7] * one_sqrt2 + ((int16)1<<(GREY_SHIFT-1))) >> GREY_SHIFT;
/* create the vectors, centered at 0,0 */
xy_points[0].x = -diffs[0];
xy_points[0].y = diffs[0];
xy_points[1].x = 0;
xy_points[1].y = diffs[1];
xy_points[2].x = xy_points[2].y = diffs[2];
xy_points[3].x = -diffs[3];
xy_points[3].y = 0;
xy_points[4].x = 0;
xy_points[4].y = 0;
xy_points[5].x = diffs[4];
xy_points[5].y = 0;
xy_points[6].x = xy_points[6].y = -diffs[5];
xy_points[7].x = 0;
xy_points[7].y = -diffs[6];
xy_points[8].x = diffs[7];
xy_points[8].y = -diffs[7];
/* calculate the centroid of the points */
for (i = 0; i < 9; i++)
{
centx += xy_points[i].x;
centy += xy_points[i].y;
}
centx /= 9;
centy /= 9;
/* translate centroid to 0,0 */
for (i = 0; i < 9; i++)
{
xy_points[i].x -= centx;
xy_points[i].y -= centy;
}
/* fill inertia tensor 3x3 matrix */
for (i = 0; i < 9; i++)
{
half_matrix[0] += xy_points[i].x * xy_points[i].x;
half_matrix[1] += xy_points[i].y * xy_points[i].x;
half_matrix[2] += xy_points[i].y * xy_points[i].y;
}
/* calculate eigenvalues */
a = half_matrix[0] - half_matrix[2];
b = half_matrix[1] << 1;
b = sqrt(b*b + a*a);
a = half_matrix[0] + half_matrix[2];
eigenval1 = (a + b);
eigenval2 = (a - b);
/* find largest eigenvalue */
if (eigenval1 == eigenval2) /* X and + shapes */
return '*';
else if (eigenval1 > eigenval2)
best_val = eigenval1;
else
best_val = eigenval2;
/* white center pixel, black background */
if (!best_val)
return '*';
/* divide eigenvalue by 2, postponed from when it should have been
done during the eigenvalue calculation but was delayed for
another early exit opportunity */
best_val *= 0.5;
/* calculate eigenvectors */
c = best_val + half_matrix[1];
a = c - half_matrix[0];
b = c - half_matrix[2];
if (b)
{
x = 1.0;
ratio = y = a / b;
}
else if (a)
{
y = 1.0;
x = b / a;
ratio = a / b;
}
else if (a == b)
{
*return_angle = 13500;
return '\\';
}
else
return '*';
/* calculate angle in degrees * 100 */
if (x)
{
angle = (int32) floor(5729.577951307 * fast_atan(ratio) + 0.5);
if (x < 0.0) angle += 18000;
}
else
{
if (y > 0.0) angle = 9000;
else if (y < 0.0) angle = -9000;
else return '0';
}
/* force angle to lie between 0 to 360 */
if (angle < 0) angle += 36000;
if (angle > 18000) angle -= 18000;
*return_angle = angle;
if (angle <= 2250)
return '-';
if (angle < 6750)
return '/';
if (angle <= 11250)
return '|';
if (angle < 15750)
return '\\';
return '-';
}
/* Check for mis-detected arrow patterns. Return 1 (good), 0 (bad). */
int check_arrows(int best_dir, uint16 *pixels, int8 *sim, int half_flag)
{
uint16 center = pixels[4];
if (center == pixels[0] && center == pixels[2] &&
center == pixels[6] && center == pixels[8])
{
switch(best_dir)
{
case 5:
if (center != pixels[5]) /* < */
return 0;
break;
case 6:
if (center != pixels[3]) /* > */
return 0;
break;
case 7:
if (center != pixels[7]) /* ^ */
return 0;
break;
case 8:
if (center != pixels[1]) /* v */
return 0;
break;
}
}
switch(best_dir)
{
case 5: /* < */
if (center == pixels[2] && center == pixels[8] &&
pixels[1] == pixels[5] && pixels[5] == pixels[7] &&
(((center == pixels[0]) ^ (center == pixels[6])) ||
(center == pixels[0] && center == pixels[6] &&
pixels[1] != pixels[3])))
return 0;
break;
case 6: /* > */
if (center == pixels[0] && center == pixels[6] &&
pixels[1] == pixels[3] && pixels[3] == pixels[7] &&
(((center == pixels[2]) ^ (center == pixels[8])) ||
(center == pixels[2] && center == pixels[8] &&
pixels[1] != pixels[5])))
return 0;
break;
case 7: /* ^ */
if (center == pixels[6] && center == pixels[8] &&
pixels[3] == pixels[7] && pixels[7] == pixels[5] &&
(((center == pixels[0]) ^ (center == pixels[2])) ||
(center == pixels[0] && center == pixels[2] &&
pixels[3] != pixels[1])))
return 0;
break;
case 8: /* v */
if (center == pixels[0] && center == pixels[2] &&
pixels[1] == pixels[3] && pixels[1] == pixels[5] &&
(((center == pixels[6]) ^ (center == pixels[8])) ||
(center == pixels[6] && center == pixels[8] &&
pixels[3] != pixels[7])))
return 0;
break;
}
switch(best_dir)
{
case 5:
if (sim[0] == sim[5] &&
sim[1] == sim[3] &&
sim[3] == sim[6] &&
((sim[2] && sim[7]) ||
(half_flag && sim_sum == 2 && sim[4] &&
(sim[2] || sim[7])))) /* < */
return 1;
break;
case 6:
if (sim[2] == sim[7] &&
sim[1] == sim[4] &&
sim[4] == sim[6] &&
((sim[0] && sim[5]) ||
(half_flag && sim_sum == 2 && sim[3] &&
(sim[0] || sim[5])))) /* > */
return 1;
break;
case 7:
if (sim[0] == sim[2] &&
sim[1] == sim[3] &&
sim[3] == sim[4] &&
((sim[5] && sim[7]) ||
(half_flag && sim_sum == 2 && sim[6] &&
(sim[5] || sim[7])))) /* ^ */
return 1;
break;
case 8:
if (sim[5] == sim[7] &&
sim[3] == sim[6] &&
sim[4] == sim[6] &&
((sim[0] && sim[2]) ||
(half_flag && sim_sum == 2 && sim[1] &&
(sim[0] || sim[2])))) /* v */
return 1;
break;
}
return 0;
}
/*
* Take original direction, refine it by testing different pixel difference
* patterns based on the initial gross edge direction.
*
* The angle value is not currently used, but may be useful for future
* refinement algorithms.
*
*/
int refine_direction(char edge_type, uint16 *pixels, int16 *bptr,
int8 *sim, double angle)
{
int32 sums_dir[9] = { 0 };
int32 sum;
int32 best_sum;
int i, n, best_dir;
int16 diff_array[26];
int ok_arrow_flag = 1;
/*
* - '- -. \ '| |. | |' .| / -' .- < > ^ v
*
* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
*
* \' .\ '/ /.
*
* 16 17 18 19
*
*/
switch(edge_type)
{
case '|':
diff_array[0] = labs(bptr[4] - bptr[1]);
diff_array[1] = labs(bptr[4] - bptr[7]);
diff_array[2] = labs(bptr[3] - bptr[0]);
diff_array[3] = labs(bptr[3] - bptr[6]);
diff_array[4] = labs(bptr[5] - bptr[2]);
diff_array[5] = labs(bptr[5] - bptr[8]);
diff_array[6] = labs(bptr[4] - bptr[2]);
diff_array[7] = labs(bptr[4] - bptr[8]);
diff_array[8] = labs(bptr[3] - bptr[1]);
diff_array[9] = labs(bptr[3] - bptr[7]);
diff_array[10] = labs(bptr[4] - bptr[0]);
diff_array[11] = labs(bptr[4] - bptr[6]);
diff_array[12] = labs(bptr[5] - bptr[1]);
diff_array[13] = labs(bptr[5] - bptr[7]);
diff_array[14] = labs(bptr[0] - bptr[6]);
diff_array[15] = labs(bptr[2] - bptr[8]);
diff_array[16] = labs(bptr[1] - bptr[7]);
diff_array[17] = labs(bptr[0] - bptr[1]);
diff_array[18] = labs(bptr[2] - bptr[1]);
diff_array[19] = labs(bptr[0] - bptr[2]);
diff_array[20] = labs(bptr[3] - bptr[5]);
diff_array[21] = labs(bptr[6] - bptr[8]);
diff_array[22] = labs(bptr[6] - bptr[7]);
diff_array[23] = labs(bptr[8] - bptr[7]);
/* | vertical */
sums_dir[0] = diff_array[0] + diff_array[1] + diff_array[2] +
diff_array[3] + diff_array[4] + diff_array[5];
/* << top */
sum = diff_array[8] + diff_array[9] +
((diff_array[6] + diff_array[7] +
diff_array[12] + diff_array[13]) << 1) +
diff_array[14] + diff_array[16] + diff_array[15];
sum = (sum * 6) / 13;
sums_dir[5] = sum;
/* >> top */
sum = diff_array[12] + diff_array[13] +
((diff_array[10] + diff_array[11] +
diff_array[8] + diff_array[9]) << 1) +
diff_array[15] + diff_array[16] + diff_array[14];
sum = (sum * 6) / 13;
sums_dir[6] = sum;
/* ^ bottom */
sum = diff_array[8] + diff_array[12] +
((diff_array[11] + diff_array[7]) << 1) +
(diff_array[1] << 2) +
diff_array[19] + diff_array[20] + diff_array[21];
sum = (sum * 6) / 13;
sums_dir[7] = sum;
/* v bottom */
sum = diff_array[9] + diff_array[13] +
((diff_array[10] + diff_array[6]) << 1) +
(diff_array[0] << 2) +
diff_array[21] + diff_array[20] + diff_array[19];
sum = (sum * 6) / 13;
sums_dir[8] = sum;
/* '| */
sums_dir[1] = diff_array[1] + diff_array[5] + diff_array[10] +
diff_array[12] + (diff_array[3] << 1);
/* '| alt */
sum = diff_array[10] + diff_array[1] + diff_array[18] +
diff_array[4] + diff_array[5] + diff_array[14];
if (sum < sums_dir[1])
sums_dir[1] = sum;
/* |. */
sums_dir[2] = diff_array[0] + diff_array[2] + diff_array[7] +
diff_array[9] + (diff_array[4] << 1);
/* |. alt */
sum = diff_array[0] + diff_array[7] + diff_array[22] +
diff_array[3] + diff_array[2] + diff_array[15];
if (sum < sums_dir[2])
sums_dir[2] = sum;
/* |' */
sums_dir[3] = diff_array[1] + diff_array[3] + diff_array[6] +
diff_array[8] + (diff_array[5] << 1);
/* |' alt */
sum = diff_array[6] + diff_array[1] + diff_array[17] +
diff_array[2] + diff_array[3] + diff_array[15];
if (sum < sums_dir[3])
sums_dir[3] = sum;
/* .| */
sums_dir[4] = diff_array[0] + diff_array[4] + diff_array[11] +
diff_array[13] + (diff_array[2] << 1);
/* .| alt */
sum = diff_array[11] + diff_array[0] + diff_array[23] +
diff_array[5] + diff_array[4] + diff_array[14];
if (sum < sums_dir[4])
sums_dir[4] = sum;
best_sum = sums_dir[0];
for (i = 1; i < 9; i++)
if (sums_dir[i] < best_sum) best_sum = sums_dir[i];
if (best_sum == sums_dir[0]) return 6; /* | */
best_dir = 0;
for (i = 0, n = 0; i < 9; i++)
{
if (sums_dir[i] == best_sum)
{
best_dir = i;
n++;
}
}
/* best direction uncertain, return original direction */
if (n > 1) return 6; /* | */
if (best_dir >= 5)
ok_arrow_flag = check_arrows(best_dir, pixels, sim, 1);
switch(best_dir)
{
case 1:
return 4; /* '| */
break;
case 2:
return 5; /* |. */
break;
case 3:
return 7; /* |' */
break;
case 4:
return 8; /* .| */
break;
case 5:
if (ok_arrow_flag)
return 12; /* < */
break;
case 6:
if (ok_arrow_flag)
return 13; /* > */
break;
case 7:
if (ok_arrow_flag)
return 14; /* ^ */
break;
case 8:
if (ok_arrow_flag)
return 15; /* V */
break;
case 0:
default:
return 6; /* | */
break;
}
break;
case '-':
diff_array[0] = labs(bptr[4] - bptr[3]);
diff_array[1] = labs(bptr[4] - bptr[5]);
diff_array[2] = labs(bptr[0] - bptr[1]);
diff_array[3] = labs(bptr[1] - bptr[2]);
diff_array[4] = labs(bptr[7] - bptr[6]);
diff_array[5] = labs(bptr[7] - bptr[8]);
diff_array[6] = labs(bptr[4] - bptr[6]);
diff_array[7] = labs(bptr[4] - bptr[8]);
diff_array[8] = labs(bptr[1] - bptr[3]);
diff_array[9] = labs(bptr[1] - bptr[5]);
diff_array[10] = labs(bptr[4] - bptr[0]);
diff_array[11] = labs(bptr[4] - bptr[2]);
diff_array[12] = labs(bptr[7] - bptr[3]);
diff_array[13] = labs(bptr[7] - bptr[5]);
diff_array[14] = labs(bptr[0] - bptr[2]);
diff_array[15] = labs(bptr[6] - bptr[8]);
diff_array[16] = labs(bptr[3] - bptr[5]);
diff_array[17] = labs(bptr[0] - bptr[3]);
diff_array[18] = labs(bptr[6] - bptr[3]);
diff_array[19] = labs(bptr[0] - bptr[6]);
diff_array[20] = labs(bptr[1] - bptr[7]);
diff_array[21] = labs(bptr[2] - bptr[8]);
diff_array[22] = labs(bptr[2] - bptr[5]);
diff_array[23] = labs(bptr[8] - bptr[5]);
/* - horizontal */
sums_dir[0] = diff_array[0] + diff_array[1] + diff_array[2] +
diff_array[3] + diff_array[4] + diff_array[5];
/* << bottom */
sum = diff_array[8] + diff_array[12] +
((diff_array[11] + diff_array[7]) << 1) +
(diff_array[1] << 2) +
diff_array[19] + diff_array[20] + diff_array[21];
sum = (sum * 6) / 13;
sums_dir[5] = sum;
/* >> bottom */
sum = diff_array[9] + diff_array[13] +
((diff_array[10] + diff_array[6]) << 1) +
(diff_array[0] << 2) +
diff_array[21] + diff_array[20] + diff_array[19];
sum = (sum * 6) / 13;
sums_dir[6] = sum;
/* ^ top */
sum = diff_array[8] + diff_array[9] +
((diff_array[6] + diff_array[7] +
diff_array[12] + diff_array[13]) << 1) +
diff_array[14] + diff_array[16] + diff_array[15];
sum = (sum * 6) / 13;
sums_dir[7] = sum;
/* v top */
sum = diff_array[12] + diff_array[13] +
((diff_array[10] + diff_array[11] +
diff_array[8] + diff_array[9]) << 1) +
diff_array[15] + diff_array[16] + diff_array[14];
sum = (sum * 6) / 13;
sums_dir[8] = sum;
/* '- */
sums_dir[1] = diff_array[1] + diff_array[5] + diff_array[10] +
diff_array[12] + (diff_array[3] << 1);
/* '- alt */
sum = diff_array[10] + diff_array[1] + diff_array[18] +
diff_array[4] + diff_array[5] + diff_array[14];
if (sum < sums_dir[1])
sums_dir[1] = sum;
/* -. */
sums_dir[2] = diff_array[0] + diff_array[2] + diff_array[7] +
diff_array[9] + (diff_array[4] << 1);
/* -. alt */
sum = diff_array[0] + diff_array[7] + diff_array[22] +
diff_array[3] + diff_array[2] + diff_array[15];
if (sum < sums_dir[2])
sums_dir[2] = sum;
/* -' */
sums_dir[3] = diff_array[0] + diff_array[4] + diff_array[11] +
diff_array[13] + (diff_array[2] << 1);
/* -' alt */
sum = diff_array[11] + diff_array[0] + diff_array[23] +
diff_array[5] + diff_array[4] + diff_array[14];
if (sum < sums_dir[3])
sums_dir[3] = sum;
/* .- */
sums_dir[4] = diff_array[1] + diff_array[3] + diff_array[6] +
diff_array[8] + (diff_array[5] << 1);
/* .- alt */
sum = diff_array[6] + diff_array[1] + diff_array[17] +
diff_array[2] + diff_array[3] + diff_array[15];
if (sum < sums_dir[4])
sums_dir[4] = sum;
best_sum = sums_dir[0];
for (i = 1; i < 9; i++)
if (sums_dir[i] < best_sum) best_sum = sums_dir[i];
if (best_sum == sums_dir[0]) return 0; /* - */
best_dir = 0;
for (i = 0, n = 0; i < 9; i++)
{
if (sums_dir[i] == best_sum)
{
best_dir = i;
n++;
}
}
/* best direction uncertain, return original direction */
if (n > 1) return 0; /* - */
if (best_dir >= 5)
ok_arrow_flag = check_arrows(best_dir, pixels, sim, 1);
switch(best_dir)
{
case 1:
return 1; /* '- */
break;
case 2:
return 2; /* -. */
break;
case 3:
return 10; /* -' */
break;
case 4:
return 11; /* .- */
break;
case 5:
if (ok_arrow_flag)
return 12; /* < */
break;
case 6:
if (ok_arrow_flag)
return 13; /* > */
break;
case 7:
if (ok_arrow_flag)
return 14; /* ^ */
break;
case 8:
if (ok_arrow_flag)
return 15; /* V */
break;
case 0:
default:
return 0; /* - */
break;
}
break;
case '\\':
/* CHECK -- handle noisy half-diags */
if (sim_sum == 1)
{
if (pixels[1] == pixels[3] && pixels[3] == pixels[5] &&
pixels[5] == pixels[7])
{
if (pixels[2] != pixels[1] && pixels[6] != pixels[1])
{
sum = labs(bptr[2] - bptr[4]) +
labs(bptr[6] - bptr[4]);
if (sim[0] && sum < (labs(bptr[8] - bptr[4]) << 1))
{
if (bptr[4] > bptr[8])
{
if (bptr[2] > bptr[4] &&
bptr[6] > bptr[4])
return 18; /* '/ */
}
else
{
if (bptr[2] < bptr[4] &&
bptr[6] < bptr[4])
return 18; /* '/ */
}
}
if (sim[7] && sum < (labs(bptr[0] - bptr[4]) << 1))
{
if (bptr[4] > bptr[0])
{
if (bptr[2] > bptr[4] &&
bptr[6] > bptr[4])
return 19; /* /. */
}
else
{
if (bptr[2] < bptr[4] &&
bptr[6] < bptr[4])
return 19; /* /. */
}
}
}
}
if (sim[0] &&
labs(bptr[4] - bptr[0]) < ((int16)1<<(GREY_SHIFT-3)))
return 3; /* \ */
if (sim[7] &&
labs(bptr[4] - bptr[8]) < ((int16)1<<(GREY_SHIFT-3)))
return 3; /* \ */
}
diff_array[0] = labs(bptr[4] - bptr[0]);
diff_array[1] = labs(bptr[4] - bptr[5]);
diff_array[2] = labs(bptr[3] - bptr[7]);
diff_array[3] = labs(bptr[7] - bptr[8]);
diff_array[4] = labs(bptr[1] - bptr[2]);
diff_array[5] = labs(bptr[4] - bptr[3]);
diff_array[6] = labs(bptr[4] - bptr[8]);
diff_array[7] = labs(bptr[0] - bptr[1]);
diff_array[8] = labs(bptr[1] - bptr[5]);
diff_array[9] = labs(bptr[6] - bptr[7]);
diff_array[10] = labs(bptr[4] - bptr[7]);
diff_array[11] = labs(bptr[5] - bptr[8]);
diff_array[12] = labs(bptr[3] - bptr[6]);
diff_array[13] = labs(bptr[4] - bptr[1]);
diff_array[14] = labs(bptr[0] - bptr[3]);
diff_array[15] = labs(bptr[2] - bptr[5]);
diff_array[20] = labs(bptr[0] - bptr[2]);
diff_array[21] = labs(bptr[6] - bptr[8]);
diff_array[22] = labs(bptr[0] - bptr[6]);
diff_array[23] = labs(bptr[2] - bptr[8]);
diff_array[16] = labs(bptr[4] - bptr[2]);
diff_array[18] = labs(bptr[4] - bptr[6]);
/* '- */
sums_dir[1] = diff_array[0] + diff_array[1] + diff_array[2] +
diff_array[3] + (diff_array[4] << 1);
/* '- alt */
sum = diff_array[0] + diff_array[1] + diff_array[12] +
diff_array[9] + diff_array[3] + diff_array[20];
if (sum < sums_dir[1])
sums_dir[1] = sum;
/* -. */
sums_dir[2] = diff_array[5] + diff_array[6] + diff_array[7] +
diff_array[8] + (diff_array[9] << 1);
/* -. alt */
sum = diff_array[6] + diff_array[5] + diff_array[15] +
diff_array[4] + diff_array[7] + diff_array[21];
if (sum < sums_dir[2])
sums_dir[2] = sum;
/* '| */
sums_dir[3] = diff_array[0] + diff_array[8] + diff_array[10] +
diff_array[11] + (diff_array[12] << 1);
/* '| alt */
sum = diff_array[0] + diff_array[10] + diff_array[4] +
diff_array[15] + diff_array[11] + diff_array[22];
if (sum < sums_dir[3])
sums_dir[3] = sum;
/* |. */
sums_dir[4] = diff_array[2] + diff_array[6] + diff_array[13] +
diff_array[14] + (diff_array[15] << 1);
/* |. alt */
sum = diff_array[13] + diff_array[6] + diff_array[9] +
diff_array[12] + diff_array[14] + diff_array[23];
if (sum < sums_dir[4])
sums_dir[4] = sum;
/* \ 45 */
sums_dir[0] = diff_array[0] + diff_array[6] +
(diff_array[2] << 1) + (diff_array[8] << 1);
/* << top */
sum = labs(bptr[3] - bptr[1]) + labs(bptr[3] - bptr[7]) +
((labs(bptr[4] - bptr[2]) + labs(bptr[4] - bptr[8]) +
labs(bptr[5] - bptr[1]) + labs(bptr[5] - bptr[7])) << 1) +
labs(bptr[0] - bptr[6]) + labs(bptr[1] - bptr[7]) +
labs(bptr[2] - bptr[8]);
sum = (sum * 6) / 13;
sums_dir[5] = sum;
/* >> top */
sum = labs(bptr[5] - bptr[1]) + labs(bptr[5] - bptr[7]) +
((labs(bptr[4] - bptr[0]) + labs(bptr[4] - bptr[6]) +
labs(bptr[3] - bptr[1]) + labs(bptr[3] - bptr[7])) << 1) +
labs(bptr[2] - bptr[8]) + labs(bptr[1] - bptr[7]) +
labs(bptr[0] - bptr[6]);
sum = (sum * 6) / 13;
sums_dir[6] = sum;
/* ^ top */
sum = labs(bptr[1] - bptr[3]) + labs(bptr[1] - bptr[5]) +
((labs(bptr[4] - bptr[6]) + labs(bptr[4] - bptr[8]) +
labs(bptr[7] - bptr[3]) + labs(bptr[7] - bptr[5])) << 1) +
labs(bptr[0] - bptr[2]) + labs(bptr[3] - bptr[5]) +
labs(bptr[6] - bptr[8]);
sum = (sum * 6) / 13;
sums_dir[7] = sum;
/* v top */
sum = labs(bptr[7] - bptr[3]) + labs(bptr[7] - bptr[5]) +
((labs(bptr[4] - bptr[0]) + labs(bptr[4] - bptr[2]) +
labs(bptr[1] - bptr[3]) + labs(bptr[1] - bptr[5])) << 1) +
labs(bptr[6] - bptr[8]) + labs(bptr[3] - bptr[5]) +
labs(bptr[0] - bptr[2]);
sum = (sum * 6) / 13;
sums_dir[8] = sum;
best_sum = sums_dir[0];
for (i = 1; i < 9; i++)
if (sums_dir[i] < best_sum) best_sum = sums_dir[i];
best_dir = 0;
for (i = 0, n = 0; i < 9; i++)
{
if (sums_dir[i] == best_sum)
{
best_dir = i;
n++;
}
}
/* CHECK -- handle zig-zags */
if (sim_sum == 3)
{
if ((best_dir == 0 || best_dir == 1) &&
sim[0] && sim[1] && sim[4])
return 1; /* '- */
if ((best_dir == 0 || best_dir == 2) &&
sim[3] && sim[6] && sim[7])
return 2; /* -. */
if ((best_dir == 0 || best_dir == 3) &&
sim[0] && sim[3] && sim[6])
return 4; /* '| */
if ((best_dir == 0 || best_dir == 4) &&
sim[1] && sim[4] && sim[7])
return 5; /* |. */
}
if (n > 1 && best_sum == sums_dir[0]) return 3; /* \ */
/* best direction uncertain, return non-edge to avoid artifacts */
if (n > 1) return -1;
/* CHECK -- diagonal intersections */
if (best_dir == 0 &&
(sim[1] == sim[4] || sim[3] == sim[6]) &&
(sim[1] == sim[3] || sim[4] == sim[6]))
{
if ((pixels[1] == pixels[3] || pixels[5] == pixels[7]) ||
((pixels[0] == pixels[4]) ^ (pixels[8] == pixels[4])))
{
if (pixels[2] == pixels[4])
return 16; /* \' */
if (pixels[6] == pixels[4])
return 17; /* .\ */
}
if (sim_sum == 3 && sim[0] && sim[7] &&
pixels[1] == pixels[3] && pixels[3] == pixels[5] &&
pixels[5] == pixels[7])
{
if (sim[2])
return 16; /* \' */
if (sim[5])
return 17; /* .\ */
}
if (sim_sum == 3 && sim[2] && sim[5])
{
if (sim[0])
return 18; /* '/ */
if (sim[7])
return 19; /* /. */
}
}
if (best_dir >= 5)
ok_arrow_flag = check_arrows(best_dir, pixels, sim, 0);
switch(best_dir)
{
case 1:
return 1; /* '- */
break;
case 2:
return 2; /* -. */
break;
case 3:
return 4; /* '| */
break;
case 4:
return 5; /* |. */
break;
case 5:
if (ok_arrow_flag)
return 12; /* < */
break;
case 6:
if (ok_arrow_flag)
return 13; /* > */
break;
case 7:
if (ok_arrow_flag)
return 14; /* ^ */
break;
case 8:
if (ok_arrow_flag)
return 15; /* V */
break;
case 0:
default:
return 3; /* \ */
break;
}
break;
case '/':
/* CHECK -- handle noisy half-diags */
if (sim_sum == 1)
{
if (pixels[1] == pixels[3] && pixels[3] == pixels[5] &&
pixels[5] == pixels[7])
{
if (pixels[0] != pixels[1] && pixels[8] != pixels[1])
{
sum = labs(bptr[0] - bptr[4]) +
labs(bptr[8] - bptr[4]);
if (sim[2] && sum < (labs(bptr[6] - bptr[4]) << 1))
{
if (bptr[4] > bptr[6])
{
if (bptr[0] > bptr[4] &&
bptr[8] > bptr[4])
return 16; /* \' */
}
else
{
if (bptr[0] < bptr[4] &&
bptr[8] < bptr[4])
return 16; /* \' */
}
}
if (sim[5] && sum < (labs(bptr[2] - bptr[4]) << 1))
{
if (bptr[4] > bptr[2])
{
if (bptr[0] > bptr[4] &&
bptr[8] > bptr[4])
{
if (pixels[6] == pixels[4])
return 17; /* .\ */
return 3; /* \ */
}
}
else
{
if (bptr[0] < bptr[4] &&
bptr[8] < bptr[4])
{
if (pixels[6] == pixels[4])
return 17; /* .\ */
return 3; /* \ */
}
}
}
}
}
if (sim[2] &&
labs(bptr[4] - bptr[2]) < ((int16)1<<(GREY_SHIFT-3)))
return 9; /* / */
if (sim[5] &&
labs(bptr[4] - bptr[6]) < ((int16)1<<(GREY_SHIFT-3)))
return 9; /* / */
}
diff_array[0] = labs(bptr[4] - bptr[0]);
diff_array[1] = labs(bptr[4] - bptr[5]);
diff_array[3] = labs(bptr[7] - bptr[8]);
diff_array[4] = labs(bptr[1] - bptr[2]);
diff_array[5] = labs(bptr[4] - bptr[3]);
diff_array[6] = labs(bptr[4] - bptr[8]);
diff_array[7] = labs(bptr[0] - bptr[1]);
diff_array[9] = labs(bptr[6] - bptr[7]);
diff_array[10] = labs(bptr[4] - bptr[7]);
diff_array[11] = labs(bptr[5] - bptr[8]);
diff_array[12] = labs(bptr[3] - bptr[6]);
diff_array[13] = labs(bptr[4] - bptr[1]);
diff_array[14] = labs(bptr[0] - bptr[3]);
diff_array[15] = labs(bptr[2] - bptr[5]);
diff_array[16] = labs(bptr[4] - bptr[2]);
diff_array[17] = labs(bptr[1] - bptr[3]);
diff_array[18] = labs(bptr[4] - bptr[6]);
diff_array[19] = labs(bptr[5] - bptr[7]);
diff_array[20] = labs(bptr[0] - bptr[2]);
diff_array[21] = labs(bptr[6] - bptr[8]);
diff_array[22] = labs(bptr[0] - bptr[6]);
diff_array[23] = labs(bptr[2] - bptr[8]);
/* |' */
sums_dir[1] = diff_array[10] + diff_array[12] + diff_array[16] +
diff_array[17] + (diff_array[11] << 1);
/* |' alt */
sum = diff_array[16] + diff_array[10] + diff_array[7] +
diff_array[14] + diff_array[12] + diff_array[23];
if (sum < sums_dir[1])
sums_dir[1] = sum;
/* .| */
sums_dir[2] = diff_array[13] + diff_array[15] + diff_array[18] +
diff_array[19] + (diff_array[14] << 1);
/* .| alt */
sum = diff_array[18] + diff_array[13] + diff_array[3] +
diff_array[11] + diff_array[15] + diff_array[22];
if (sum < sums_dir[2])
sums_dir[2] = sum;
/* -' */
sums_dir[3] = diff_array[5] + diff_array[9] + diff_array[16] +
diff_array[19] + (diff_array[7] << 1);
/* -' alt */
sum = diff_array[16] + diff_array[5] + diff_array[11] +
diff_array[3] + diff_array[9] + diff_array[20];
if (sum < sums_dir[3])
sums_dir[3] = sum;
/* .- */
sums_dir[4] = diff_array[1] + diff_array[4] + diff_array[17] +
diff_array[18] + (diff_array[3] << 1);
/* .- alt */
sum = diff_array[18] + diff_array[1] + diff_array[14] +
diff_array[7] + diff_array[4] + diff_array[21];
if (sum < sums_dir[4])
sums_dir[4] = sum;
/* / 135 */
sums_dir[0] = diff_array[16] + diff_array[18] +
(diff_array[17] << 1) + (diff_array[19] << 1);
/* << top */
sum = labs(bptr[3] - bptr[1]) + labs(bptr[3] - bptr[7]) +
((labs(bptr[4] - bptr[2]) + labs(bptr[4] - bptr[8]) +
labs(bptr[5] - bptr[1]) + labs(bptr[5] - bptr[7])) << 1) +
labs(bptr[0] - bptr[6]) + labs(bptr[1] - bptr[7]) +
labs(bptr[2] - bptr[8]);
sum = (sum * 6) / 13;
sums_dir[5] = sum;
/* >> top */
sum = labs(bptr[5] - bptr[1]) + labs(bptr[5] - bptr[7]) +
((labs(bptr[4] - bptr[0]) + labs(bptr[4] - bptr[6]) +
labs(bptr[3] - bptr[1]) + labs(bptr[3] - bptr[7])) << 1) +
labs(bptr[2] - bptr[8]) + labs(bptr[1] - bptr[7]) +
labs(bptr[0] - bptr[6]);
sum = (sum * 6) / 13;
sums_dir[6] = sum;
/* ^ top */
sum = labs(bptr[1] - bptr[3]) + labs(bptr[1] - bptr[5]) +
((labs(bptr[4] - bptr[6]) + labs(bptr[4] - bptr[8]) +
labs(bptr[7] - bptr[3]) + labs(bptr[7] - bptr[5])) << 1) +
labs(bptr[0] - bptr[2]) + labs(bptr[3] - bptr[5]) +
labs(bptr[6] - bptr[8]);
sum = (sum * 6) / 13;
sums_dir[7] = sum;
/* v top */
sum = labs(bptr[7] - bptr[3]) + labs(bptr[7] - bptr[5]) +
((labs(bptr[4] - bptr[0]) + labs(bptr[4] - bptr[2]) +
labs(bptr[1] - bptr[3]) + labs(bptr[1] - bptr[5])) << 1) +
labs(bptr[6] - bptr[8]) + labs(bptr[3] - bptr[5]) +
labs(bptr[0] - bptr[2]);
sum = (sum * 6) / 13;
sums_dir[8] = sum;
best_sum = sums_dir[0];
for (i = 1; i < 9; i++)
if (sums_dir[i] < best_sum) best_sum = sums_dir[i];
best_dir = 0;
for (i = 0, n = 0; i < 9; i++)
{
if (sums_dir[i] == best_sum)
{
best_dir = i;
n++;
}
}
/* CHECK -- handle zig-zags */
if (sim_sum == 3)
{
if ((best_dir == 0 || best_dir == 1) &&
sim[2] && sim[4] && sim[6])
return 7; /* |' */
if ((best_dir == 0 || best_dir == 2) &&
sim[1] && sim[3] && sim[5])
return 8; /* .| */
if ((best_dir == 0 || best_dir == 3) &&
sim[1] && sim[2] && sim[3])
return 10; /* -' */
if ((best_dir == 0 || best_dir == 4) &&
sim[4] && sim[5] && sim[6])
return 11; /* .- */
}
if (n > 1 && best_sum == sums_dir[0]) return 9; /* / */
/* best direction uncertain, return non-edge to avoid artifacts */
if (n > 1) return -1;
/* CHECK -- diagonal intersections */
if (best_dir == 0 &&
(sim[1] == sim[3] || sim[4] == sim[6]) &&
(sim[1] == sim[4] || sim[3] == sim[6]))
{
if ((pixels[1] == pixels[5] || pixels[3] == pixels[7]) ||
((pixels[2] == pixels[4]) ^ (pixels[6] == pixels[4])))
{
if (pixels[0] == pixels[4])
return 18; /* '/ */
if (pixels[8] == pixels[4])
return 19; /* /. */
}
if (sim_sum == 3 && sim[2] && sim[5] &&
pixels[1] == pixels[3] && pixels[3] == pixels[5] &&
pixels[5] == pixels[7])
{
if (sim[0])
return 18; /* '/ */
if (sim[7])
return 19; /* /. */
}
if (sim_sum == 3 && sim[0] && sim[7])
{
if (sim[2])
return 16; /* \' */
if (sim[5])
return 17; /* .\ */
}
}
if (best_dir >= 5)
ok_arrow_flag = check_arrows(best_dir, pixels, sim, 0);
switch(best_dir)
{
case 1:
return 7; /* |' */
break;
case 2:
return 8; /* .| */
break;
case 3:
return 10; /* -' */
break;
case 4:
return 11; /* .- */
break;
case 5:
if (ok_arrow_flag)
return 12; /* < */
break;
case 6:
if (ok_arrow_flag)
return 13; /* > */
break;
case 7:
if (ok_arrow_flag)
return 14; /* ^ */
break;
case 8:
if (ok_arrow_flag)
return 15; /* V */
break;
break;
case 0:
default:
return 9; /* / */
break;
}
break;
case '*':
return 127;
break;
case '0':
default:
return -1;
break;
}
return -1;
}
/* "Chess Knight" patterns can be mis-detected, fix easy cases. */
int fix_knights(int sub_type, uint16 *pixels, int8 *sim)
{
uint16 center = pixels[4];
int dir = sub_type;
int n = 0;
int flags[12] = {0};
int ok_orig_flag = 0;
/*
* - '- -. \ '| |. | |' .| / -' .-
*
* 0 1 2 3 4 5 6 7 8 9 10 11
*
*/
/* check to see if original knight is ok */
switch(sub_type)
{
case 1: /* '- */
if (sim[0] && sim[4] &&
!(sim_sum == 3 && sim[5] &&
pixels[0] == pixels[4] && pixels[6] == pixels[4]))
ok_orig_flag = 1;
break;
case 2: /* -. */
if (sim[3] && sim[7] &&
!(sim_sum == 3 && sim[2] &&
pixels[2] == pixels[4] && pixels[8] == pixels[4]))
ok_orig_flag = 1;
break;
case 4: /* '| */
if (sim[0] && sim[6] &&
!(sim_sum == 3 && sim[2] &&
pixels[0] == pixels[4] && pixels[2] == pixels[4]))
ok_orig_flag = 1;
break;
case 5: /* |. */
if (sim[1] && sim[7] &&
!(sim_sum == 3 && sim[5] &&
pixels[6] == pixels[4] && pixels[8] == pixels[4]))
ok_orig_flag = 1;
break;
case 7: /* |' */
if (sim[2] && sim[6] &&
!(sim_sum == 3 && sim[0] &&
pixels[0] == pixels[4] && pixels[2] == pixels[4]))
ok_orig_flag = 1;
break;
case 8: /* .| */
if (sim[1] && sim[5] &&
!(sim_sum == 3 && sim[7] &&
pixels[6] == pixels[4] && pixels[8] == pixels[4]))
ok_orig_flag = 1;
break;
case 10: /* -' */
if (sim[2] && sim[3] &&
!(sim_sum == 3 && sim[7] &&
pixels[2] == pixels[4] && pixels[8] == pixels[4]))
ok_orig_flag = 1;
break;
case 11: /* .- */
if (sim[4] && sim[5] &&
!(sim_sum == 3 && sim[0] &&
pixels[0] == pixels[4] && pixels[6] == pixels[4]))
ok_orig_flag = 1;
break;
default: /* not a knight */
return sub_type;
break;
}
/* look for "better" knights */
if (center == pixels[0] && center == pixels[5]) /* '- */
{
dir = 1;
flags[dir] = 1;
n++;
}
if (center == pixels[3] && center == pixels[8]) /* -. */
{
dir = 2;
flags[dir] = 1;
n++;
}
if (center == pixels[0] && center == pixels[7]) /* '| */
{
dir = 4;
flags[dir] = 1;
n++;
}
if (center == pixels[1] && center == pixels[8]) /* |. */
{
dir = 5;
flags[dir] = 1;
n++;
}
if (center == pixels[2] && center == pixels[7]) /* |' */
{
dir = 7;
flags[dir] = 1;
n++;
}
if (center == pixels[1] && center == pixels[6]) /* .| */
{
dir = 8;
flags[dir] = 1;
n++;
}
if (center == pixels[3] && center == pixels[2]) /* -' */
{
dir = 10;
flags[dir] = 1;
n++;
}
if (center == pixels[6] && center == pixels[5]) /* .- */
{
dir = 11;
flags[dir] = 1;
n++;
}
if (n == 0)
{
if (ok_orig_flag) return sub_type;
return -1;
}
if (n == 1) return dir;
if (n == 2)
{
/* slanted W patterns */
if (flags[1] && flags[5]) return 3; /* \ */
if (flags[2] && flags[4]) return 3; /* \ */
if (flags[7] && flags[11]) return 9; /* / */
if (flags[8] && flags[10]) return 9; /* / */
}
if (flags[sub_type] && ok_orig_flag) return sub_type;
return -1;
}
/* From ScummVM HQ2x/HQ3x scalers (Maxim Stepin and Max Horn) */
#define highBits 0xF7DEF7DE
#define lowBits 0x08210821
#define qhighBits 0xE79CE79C
#define qlowBits 0x18631863
#define redblueMask 0xF81F
#define greenMask 0x07E0
/* From ScummVM HQ2x/HQ3x scalers (Maxim Stepin and Max Horn) */
/**
* Interpolate two 16 bit pixel pairs at once with equal weights 1.
* In particular, A and B can contain two pixels/each in the upper
* and lower halves.
*/
uint32 INTERPOLATE(uint32 A, uint32 B)
{
return (((A & highBits) >> 1) + ((B & highBits) >> 1) + (A & B & lowBits));
}
/* From ScummVM HQ2x/HQ3x scalers (Maxim Stepin and Max Horn) */
/**
* Interpolate four 16 bit pixel pairs at once with equal weights 1.
* In particular, A and B can contain two pixels/each in the upper
* and lower halves.
*/
uint32 Q_INTERPOLATE(uint32 A, uint32 B, uint32 C, uint32 D)
{
uint32 x = ((A & qhighBits) >> 2) + ((B & qhighBits) >> 2) + ((C & qhighBits) >> 2) + ((D & qhighBits) >> 2);
uint32 y = ((A & qlowBits) + (B & qlowBits) + (C & qlowBits) + (D & qlowBits)) >> 2;
y &= qlowBits;
return x + y;
}
/* Average three pixels together */
uint16 average_three_pixels(uint16 pixel1, uint16 pixel2, uint16 pixel3)
{
uint32 rsum;
uint16 gsum, bsum;
rsum = (pixel1 & 0xF800);
rsum += (pixel2 & 0xF800);
rsum += (pixel3 & 0xF800);
rsum = div3[rsum >> 11];
gsum = (pixel1 & 0x07E0);
gsum += (pixel2 & 0x07E0);
gsum += (pixel3 & 0x07E0);
gsum = div3[gsum >> 5];
bsum = (pixel1 & 0x001F);
bsum += (pixel2 & 0x001F);
bsum += (pixel3 & 0x001F);
bsum = div3[bsum];
return ((rsum << 11) | (gsum << 5) | bsum);
}
/* Interpolate 1/3rd of the way between two pixels */
uint16 average_one_third(uint16 pixel1, uint16 pixel2)
{
uint32 rsum;
uint16 gsum, bsum;
rsum = (pixel1 & 0xF800) << 1;
rsum += (pixel2 & 0xF800);
rsum = div3[rsum >> 11];
gsum = (pixel1 & 0x07E0) << 1;
gsum += (pixel2 & 0x07E0);
gsum = div3[gsum >> 5];
bsum = (pixel1 & 0x001F) << 1;
bsum += (pixel2 & 0x001F);
bsum = div3[bsum];
return ((rsum << 11) | (gsum << 5) | bsum);
}
/* Fill pixel grid without interpolation, using the detected edge */
void anti_alias_grid_clean_3x(uint8 *dptr, int dstPitch,
uint16 *pixels, int sub_type, int16 *bptr)
{
uint16 *dptr2;
int16 tmp_grey;
uint16 center = pixels[4];
int32 diff1, diff2, diff3;
uint16 tmp[9];
uint16 *ptmp;
int i;
switch (sub_type)
{
case 1: /* '- */
for (i = 0; i < 9; i++)
tmp[i] = center;
tmp[6] = average_three_pixels(pixels[3], pixels[7], center);
tmp_grey = chosen_greyscale[tmp[6]];
#if PARANOID_KNIGHTS
diff1 = labs(bptr[4] - bptr[3]);
diff2 = labs(bptr[4] - bptr[7]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[6] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[6], pixels[3]);
diff2 = calc_pixel_diff_nosqrt(tmp[6], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[6], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[6] = pixels[3];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[6] = pixels[7];
else
tmp[6] = pixels[4];
tmp_grey = chosen_greyscale[tmp[6]];
diff1 = labs(bptr[4] - tmp_grey);
diff2 = labs(bptr[4] - bptr[8]);
if (diff1 <= diff2)
tmp[7] = tmp[6];
}
break;
case 2: /* -. */
for (i = 0; i < 9; i++)
tmp[i] = center;
tmp[2] = average_three_pixels(pixels[1], pixels[5], center);
tmp_grey = chosen_greyscale[tmp[2]];
#if PARANOID_KNIGHTS
diff1 = labs(bptr[4] - bptr[5]);
diff2 = labs(bptr[4] - bptr[1]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[2] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[2], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[2], pixels[5]);
diff3 = calc_pixel_diff_nosqrt(tmp[2], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[2] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[2] = pixels[5];
else
tmp[2] = pixels[4];
tmp_grey = chosen_greyscale[tmp[2]];
diff1 = labs(bptr[4] - tmp_grey);
diff2 = labs(bptr[4] - bptr[0]);
if (diff1 <= diff2)
tmp[1] = tmp[2];
}
break;
case 3: /* \ */
case 16: /* \' */
case 17: /* .\ */
for (i = 0; i < 9; i++)
tmp[i] = center;
if (sub_type != 16)
{
tmp[2] = average_three_pixels(pixels[1], pixels[5], center);
diff1 = calc_pixel_diff_nosqrt(tmp[2], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[2], pixels[5]);
diff3 = calc_pixel_diff_nosqrt(tmp[2], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[2] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[2] = pixels[5];
else
tmp[2] = pixels[4];
}
if (sub_type != 17)
{
tmp[6] = average_three_pixels(pixels[3], pixels[7], center);
diff1 = calc_pixel_diff_nosqrt(tmp[6], pixels[3]);
diff2 = calc_pixel_diff_nosqrt(tmp[6], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[6], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[6] = pixels[3];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[6] = pixels[7];
else
tmp[6] = pixels[4];
}
break;
case 4: /* '| */
for (i = 0; i < 9; i++)
tmp[i] = center;
tmp[2] = average_three_pixels(pixels[1], pixels[5], center);
tmp_grey = chosen_greyscale[tmp[2]];
#if PARANOID_KNIGHTS
diff1 = labs(bptr[4] - bptr[1]);
diff2 = labs(bptr[4] - bptr[5]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[2] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[2], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[2], pixels[5]);
diff3 = calc_pixel_diff_nosqrt(tmp[2], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[2] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[2] = pixels[5];
else
tmp[2] = pixels[4];
tmp_grey = chosen_greyscale[tmp[2]];
diff1 = labs(bptr[4] - tmp_grey);
diff2 = labs(bptr[4] - bptr[8]);
if (diff1 <= diff2)
tmp[5] = tmp[2];
}
break;
case 5: /* |. */
for (i = 0; i < 9; i++)
tmp[i] = center;
tmp[6] = average_three_pixels(pixels[3], pixels[7], center);
tmp_grey = chosen_greyscale[tmp[6]];
#if PARANOID_KNIGHTS
diff1 = labs(bptr[4] - bptr[7]);
diff2 = labs(bptr[4] - bptr[3]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[6] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[6], pixels[3]);
diff2 = calc_pixel_diff_nosqrt(tmp[6], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[6], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[6] = pixels[3];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[6] = pixels[7];
else
tmp[6] = pixels[4];
tmp_grey = chosen_greyscale[tmp[6]];
diff1 = labs(bptr[4] - tmp_grey);
diff2 = labs(bptr[4] - bptr[0]);
if (diff1 <= diff2)
tmp[3] = tmp[6];
}
break;
case 7: /* |' */
for (i = 0; i < 9; i++)
tmp[i] = center;
tmp[0] = average_three_pixels(pixels[1], pixels[3], center);
tmp_grey = chosen_greyscale[tmp[0]];
#if PARANOID_KNIGHTS
diff1 = labs(bptr[4] - bptr[1]);
diff2 = labs(bptr[4] - bptr[3]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[0] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[0], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[0], pixels[3]);
diff3 = calc_pixel_diff_nosqrt(tmp[0], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[0] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[0] = pixels[3];
else
tmp[0] = pixels[4];
tmp_grey = chosen_greyscale[tmp[0]];
diff1 = labs(bptr[4] - tmp_grey);
diff2 = labs(bptr[4] - bptr[6]);
if (diff1 <= diff2)
tmp[3] = tmp[0];
}
break;
case 8: /* .| */
for (i = 0; i < 9; i++)
tmp[i] = center;
tmp[8] = average_three_pixels(pixels[5], pixels[7], center);
tmp_grey = chosen_greyscale[tmp[8]];
#if PARANOID_KNIGHTS
diff1 = labs(bptr[4] - bptr[7]);
diff2 = labs(bptr[4] - bptr[5]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[8] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[8], pixels[5]);
diff2 = calc_pixel_diff_nosqrt(tmp[8], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[8], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[8] = pixels[5];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[8] = pixels[7];
else
tmp[8] = pixels[4];
tmp_grey = chosen_greyscale[tmp[8]];
diff1 = labs(bptr[4] - tmp_grey);
diff2 = labs(bptr[4] - bptr[2]);
if (diff1 <= diff2)
tmp[5] = tmp[8];
}
break;
case 9: /* / */
case 18: /* '/ */
case 19: /* /. */
for (i = 0; i < 9; i++)
tmp[i] = center;
if (sub_type != 18)
{
tmp[0] = average_three_pixels(pixels[1], pixels[3], center);
diff1 = calc_pixel_diff_nosqrt(tmp[0], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[0], pixels[3]);
diff3 = calc_pixel_diff_nosqrt(tmp[0], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[0] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[0] = pixels[3];
else
tmp[0] = pixels[4];
}
if (sub_type != 19)
{
tmp[8] = average_three_pixels(pixels[5], pixels[7], center);
diff1 = calc_pixel_diff_nosqrt(tmp[8], pixels[5]);
diff2 = calc_pixel_diff_nosqrt(tmp[8], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[8], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[8] = pixels[5];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[8] = pixels[7];
else
tmp[8] = pixels[4];
}
break;
case 10: /* -' */
for (i = 0; i < 9; i++)
tmp[i] = center;
tmp[8] = average_three_pixels(pixels[5], pixels[7], center);
tmp_grey = chosen_greyscale[tmp[8]];
#if PARANOID_KNIGHTS
diff1 = labs(bptr[4] - bptr[5]);
diff2 = labs(bptr[4] - bptr[7]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[8] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[8], pixels[5]);
diff2 = calc_pixel_diff_nosqrt(tmp[8], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[8], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[8] = pixels[5];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[8] = pixels[7];
else
tmp[8] = pixels[4];
tmp_grey = chosen_greyscale[tmp[8]];
diff1 = labs(bptr[4] - tmp_grey);
diff2 = labs(bptr[4] - bptr[6]);
if (diff1 <= diff2)
tmp[7] = tmp[8];
}
break;
case 11: /* .- */
for (i = 0; i < 9; i++)
tmp[i] = center;
tmp[0] = average_three_pixels(pixels[1], pixels[3], center);
tmp_grey = chosen_greyscale[tmp[0]];
#if PARANOID_KNIGHTS
diff1 = labs(bptr[4] - bptr[3]);
diff2 = labs(bptr[4] - bptr[1]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[0] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[0], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[0], pixels[3]);
diff3 = calc_pixel_diff_nosqrt(tmp[0], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[0] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[0] = pixels[3];
else
tmp[0] = pixels[4];
tmp_grey = chosen_greyscale[tmp[0]];
diff1 = labs(bptr[4] - tmp_grey);
diff2 = labs(bptr[4] - bptr[2]);
if (diff1 <= diff2)
tmp[1] = tmp[0];
}
break;
case 12: /* < */
for (i = 0; i < 9; i++)
tmp[i] = center;
tmp[0] = average_three_pixels(pixels[1], pixels[3], center);
tmp_grey = chosen_greyscale[tmp[0]];
#if PARANOID_ARROWS
diff1 = labs(bptr[4] - bptr[1]);
diff2 = labs(bptr[4] - bptr[3]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[0] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[0], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[0], pixels[3]);
diff3 = calc_pixel_diff_nosqrt(tmp[0], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[0] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[0] = pixels[3];
else
tmp[0] = pixels[4];
}
tmp[6] = average_three_pixels(pixels[3], pixels[7], center);
tmp_grey = chosen_greyscale[tmp[6]];
#if PARANOID_ARROWS
diff1 = labs(bptr[4] - bptr[3]);
diff2 = labs(bptr[4] - bptr[7]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[6] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[6], pixels[3]);
diff2 = calc_pixel_diff_nosqrt(tmp[6], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[6], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[6] = pixels[3];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[6] = pixels[7];
else
tmp[6] = pixels[4];
}
break;
case 13: /* > */
for (i = 0; i < 9; i++)
tmp[i] = center;
tmp[2] = average_three_pixels(pixels[1], pixels[5], center);
tmp_grey = chosen_greyscale[tmp[2]];
#if PARANOID_ARROWS
diff1 = labs(bptr[4] - bptr[5]);
diff2 = labs(bptr[4] - bptr[1]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[2] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[2], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[2], pixels[5]);
diff3 = calc_pixel_diff_nosqrt(tmp[2], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[2] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[2] = pixels[5];
else
tmp[2] = pixels[4];
}
tmp[8] = average_three_pixels(pixels[5], pixels[7], center);
tmp_grey = chosen_greyscale[tmp[8]];
#if PARANOID_ARROWS
diff1 = labs(bptr[4] - bptr[7]);
diff2 = labs(bptr[4] - bptr[5]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[8] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[8], pixels[5]);
diff2 = calc_pixel_diff_nosqrt(tmp[8], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[8], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[8] = pixels[5];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[8] = pixels[7];
else
tmp[8] = pixels[4];
}
break;
case 14: /* ^ */
for (i = 0; i < 9; i++)
tmp[i] = center;
tmp[0] = average_three_pixels(pixels[1], pixels[3], center);
tmp_grey = chosen_greyscale[tmp[0]];
#if PARANOID_ARROWS
diff1 = labs(bptr[4] - bptr[1]);
diff2 = labs(bptr[4] - bptr[3]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[0] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[0], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[0], pixels[3]);
diff3 = calc_pixel_diff_nosqrt(tmp[0], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[0] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[0] = pixels[3];
else
tmp[0] = pixels[4];
}
tmp[2] = average_three_pixels(pixels[1], pixels[5], center);
tmp_grey = chosen_greyscale[tmp[2]];
#if PARANOID_ARROWS
diff1 = labs(bptr[4] - bptr[5]);
diff2 = labs(bptr[4] - bptr[1]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[2] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[2], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[2], pixels[5]);
diff3 = calc_pixel_diff_nosqrt(tmp[2], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[2] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[2] = pixels[5];
else
tmp[2] = pixels[4];
}
break;
case 15: /* v */
for (i = 0; i < 9; i++)
tmp[i] = center;
tmp[6] = average_three_pixels(pixels[3], pixels[7], center);
tmp_grey = chosen_greyscale[tmp[6]];
#if PARANOID_ARROWS
diff1 = labs(bptr[4] - bptr[3]);
diff2 = labs(bptr[4] - bptr[7]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[6] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[6], pixels[3]);
diff2 = calc_pixel_diff_nosqrt(tmp[6], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[6], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[6] = pixels[3];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[6] = pixels[7];
else
tmp[6] = pixels[4];
}
tmp[8] = average_three_pixels(pixels[5], pixels[7], center);
tmp_grey = chosen_greyscale[tmp[8]];
#if PARANOID_ARROWS
diff1 = labs(bptr[4] - bptr[7]);
diff2 = labs(bptr[4] - bptr[5]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[8] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[8], pixels[5]);
diff2 = calc_pixel_diff_nosqrt(tmp[8], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[8], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[8] = pixels[5];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[8] = pixels[7];
else
tmp[8] = pixels[4];
}
break;
case 127: /* * */
case -1: /* no edge */
case 0: /* - */
case 6: /* | */
default:
dptr2 = ((uint16 *) (dptr - dstPitch)) - 1;
*dptr2++ = center;
*dptr2++ = center;
*dptr2 = center;
dptr2 = ((uint16 *) dptr) - 1;
*dptr2++ = center;
*dptr2++ = center;
#if DEBUG_REFRESH_RANDOM_XOR
*dptr2 = center ^ (uint16) (dxorshift_128() * (1L<<16));
#else
*dptr2 = center;
#endif
dptr2 = ((uint16 *) (dptr + dstPitch)) - 1;
*dptr2++ = center;
*dptr2++ = center;
*dptr2 = center;
return;
break;
}
ptmp = tmp;
dptr2 = ((uint16 *) (dptr - dstPitch)) - 1;
*dptr2++ = *ptmp++;
*dptr2++ = *ptmp++;
*dptr2 = *ptmp++;
dptr2 = ((uint16 *) dptr) - 1;
*dptr2++ = *ptmp++;
*dptr2++ = *ptmp++;
#if DEBUG_REFRESH_RANDOM_XOR
*dptr2 = *ptmp++ ^ (uint16) (dxorshift_128() * (1L<<16));
#else
*dptr2 = *ptmp++;
#endif
dptr2 = ((uint16 *) (dptr + dstPitch)) - 1;
*dptr2++ = *ptmp++;
*dptr2++ = *ptmp++;
*dptr2 = *ptmp;
}
/* Fill pixel grid with or without interpolation, using the detected edge */
void anti_alias_grid_2x(uint8 *dptr, int dstPitch,
uint16 *pixels, int sub_type, int16 *bptr,
int8 *sim,
int interpolate_2x)
{
uint16 *dptr2;
uint16 center = pixels[4];
int32 diff1, diff2, diff3;
int16 tmp_grey;
uint16 tmp[4];
uint16 *ptmp;
switch (sub_type)
{
case 1: /* '- */
tmp[0] = tmp[1] = tmp[3] = center;
tmp[2] = average_three_pixels(pixels[3], pixels[7], center);
tmp_grey = chosen_greyscale[tmp[2]];
#if PARANOID_KNIGHTS
diff1 = labs(bptr[4] - bptr[3]);
diff2 = labs(bptr[4] - bptr[7]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[2] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[2], pixels[3]);
diff2 = calc_pixel_diff_nosqrt(tmp[2], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[2], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[2] = pixels[3];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[2] = pixels[7];
else
tmp[2] = pixels[4];
tmp_grey = chosen_greyscale[tmp[2]];
diff1 = labs(bptr[4] - tmp_grey);
diff2 = labs(bptr[4] - bptr[8]);
if (diff1 <= diff2)
{
if (interpolate_2x)
{
uint16 tmp_pixel = tmp[2];
tmp[2] = Q_INTERPOLATE(tmp_pixel, tmp_pixel,
tmp_pixel, center);
tmp[3] = Q_INTERPOLATE(center, center, center, tmp_pixel);
}
}
else
{
if (interpolate_2x)
{
tmp[2] = INTERPOLATE(tmp[2], center);
}
else
{
if (bptr[4] > chosen_greyscale[tmp[2]])
tmp[2] = center;
}
}
}
break;
case 2: /* -. */
tmp[0] = tmp[2] = tmp[3] = center;
tmp[1] = average_three_pixels(pixels[1], pixels[5], center);
tmp_grey = chosen_greyscale[tmp[1]];
#if PARANOID_KNIGHTS
diff1 = labs(bptr[4] - bptr[5]);
diff2 = labs(bptr[4] - bptr[1]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[1] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[1], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[1], pixels[5]);
diff3 = calc_pixel_diff_nosqrt(tmp[1], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[1] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[1] = pixels[5];
else
tmp[1] = pixels[4];
tmp_grey = chosen_greyscale[tmp[1]];
diff1 = labs(bptr[4] - tmp_grey);
diff2 = labs(bptr[4] - bptr[0]);
if (diff1 <= diff2)
{
if (interpolate_2x)
{
uint16 tmp_pixel = tmp[1];
tmp[1] = Q_INTERPOLATE(tmp_pixel, tmp_pixel,
tmp_pixel, center);
tmp[0] = Q_INTERPOLATE(center, center, center, tmp_pixel);
}
}
else
{
if (interpolate_2x)
{
tmp[1] = INTERPOLATE(tmp[1], center);
}
else
{
if (bptr[4] > chosen_greyscale[tmp[1]])
tmp[1] = center;
}
}
}
break;
case 3: /* \ */
case 16: /* \' */
case 17: /* .\ */
tmp[0] = tmp[1] = tmp[2] = tmp[3] = center;
if (sub_type != 16)
{
tmp[1] = average_three_pixels(pixels[1], pixels[5], center);
diff1 = calc_pixel_diff_nosqrt(tmp[1], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[1], pixels[5]);
diff3 = calc_pixel_diff_nosqrt(tmp[1], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[1] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[1] = pixels[5];
else
tmp[1] = pixels[4];
if (interpolate_2x)
{
tmp[1] = INTERPOLATE(tmp[1], center);
}
/* sim test is for hyper-cephalic kitten eyes and squeeze toy
* mouse pointer in Sam&Max. Half-diags can be too thin in 2x
* nearest-neighbor, so detect them and don't anti-alias them.
*/
else if (bptr[4] > chosen_greyscale[tmp[1]] ||
(sim_sum == 1 && (sim[0] || sim[7]) &&
pixels[1] == pixels[3] && pixels[5] == pixels[7]))
tmp[1] = center;
}
if (sub_type != 17)
{
tmp[2] = average_three_pixels(pixels[3], pixels[7], center);
diff1 = calc_pixel_diff_nosqrt(tmp[2], pixels[3]);
diff2 = calc_pixel_diff_nosqrt(tmp[2], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[2], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[2] = pixels[3];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[2] = pixels[7];
else
tmp[2] = pixels[4];
if (interpolate_2x)
{
tmp[2] = INTERPOLATE(tmp[2], center);
}
/* sim test is for hyper-cephalic kitten eyes and squeeze toy
* mouse pointer in Sam&Max. Half-diags can be too thin in 2x
* nearest-neighbor, so detect them and don't anti-alias them.
*/
else if (bptr[4] > chosen_greyscale[tmp[2]] ||
(sim_sum == 1 && (sim[0] || sim[7]) &&
pixels[1] == pixels[3] && pixels[5] == pixels[7]))
tmp[2] = center;
}
break;
case 4: /* '| */
tmp[0] = tmp[2] = tmp[3] = center;
tmp[1] = average_three_pixels(pixels[1], pixels[5], center);
tmp_grey = chosen_greyscale[tmp[1]];
#if PARANOID_KNIGHTS
diff1 = labs(bptr[4] - bptr[1]);
diff2 = labs(bptr[4] - bptr[5]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[1] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[1], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[1], pixels[5]);
diff3 = calc_pixel_diff_nosqrt(tmp[1], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[1] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[1] = pixels[5];
else
tmp[1] = pixels[4];
tmp_grey = chosen_greyscale[tmp[1]];
diff1 = labs(bptr[4] - tmp_grey);
diff2 = labs(bptr[4] - bptr[8]);
if (diff1 <= diff2)
{
if (interpolate_2x)
{
uint16 tmp_pixel = tmp[1];
tmp[1] = Q_INTERPOLATE(tmp_pixel, tmp_pixel,
tmp_pixel, center);
tmp[3] = Q_INTERPOLATE(center, center, center, tmp_pixel);
}
}
else
{
if (interpolate_2x)
{
tmp[1] = INTERPOLATE(tmp[1], center);
}
else
{
if (bptr[4] > chosen_greyscale[tmp[1]])
tmp[1] = center;
}
}
}
break;
case 5: /* |. */
tmp[0] = tmp[1] = tmp[3] = center;
tmp[2] = average_three_pixels(pixels[3], pixels[7], center);
tmp_grey = chosen_greyscale[tmp[2]];
#if PARANOID_KNIGHTS
diff1 = labs(bptr[4] - bptr[7]);
diff2 = labs(bptr[4] - bptr[3]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[2] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[2], pixels[3]);
diff2 = calc_pixel_diff_nosqrt(tmp[2], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[2], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[2] = pixels[3];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[2] = pixels[7];
else
tmp[2] = pixels[4];
tmp_grey = chosen_greyscale[tmp[2]];
diff1 = labs(bptr[4] - tmp_grey);
diff2 = labs(bptr[4] - bptr[0]);
if (diff1 <= diff2)
{
if (interpolate_2x)
{
uint16 tmp_pixel = tmp[2];
tmp[2] = Q_INTERPOLATE(tmp_pixel, tmp_pixel,
tmp_pixel, center);
tmp[0] = Q_INTERPOLATE(center, center, center, tmp_pixel);
}
}
else
{
if (interpolate_2x)
{
tmp[2] = INTERPOLATE(tmp[2], center);
}
else
{
if (bptr[4] > chosen_greyscale[tmp[2]])
tmp[2] = center;
}
}
}
break;
case 7: /* |' */
tmp[1] = tmp[2] = tmp[3] = center;
tmp[0] = average_three_pixels(pixels[1], pixels[3], center);
tmp_grey = chosen_greyscale[tmp[0]];
#if PARANOID_KNIGHTS
diff1 = labs(bptr[4] - bptr[1]);
diff2 = labs(bptr[4] - bptr[3]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[0] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[0], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[0], pixels[3]);
diff3 = calc_pixel_diff_nosqrt(tmp[0], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[0] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[0] = pixels[3];
else
tmp[0] = pixels[4];
tmp_grey = chosen_greyscale[tmp[0]];
diff1 = labs(bptr[4] - tmp_grey);
diff2 = labs(bptr[4] - bptr[6]);
if (diff1 <= diff2)
{
if (interpolate_2x)
{
uint16 tmp_pixel = tmp[0];
tmp[0] = Q_INTERPOLATE(tmp_pixel, tmp_pixel,
tmp_pixel, center);
tmp[2] = Q_INTERPOLATE(center, center, center, tmp_pixel);
}
}
else
{
if (interpolate_2x)
{
tmp[0] = INTERPOLATE(tmp[0], center);
}
else
{
if (bptr[4] > chosen_greyscale[tmp[0]])
tmp[0] = center;
}
}
}
break;
case 8: /* .| */
tmp[0] = tmp[1] = tmp[2] = center;
tmp[3] = average_three_pixels(pixels[5], pixels[7], center);
tmp_grey = chosen_greyscale[tmp[3]];
#if PARANOID_KNIGHTS
diff1 = labs(bptr[4] - bptr[7]);
diff2 = labs(bptr[4] - bptr[5]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[3] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[3], pixels[5]);
diff2 = calc_pixel_diff_nosqrt(tmp[3], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[3], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[3] = pixels[5];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[3] = pixels[7];
else
tmp[3] = pixels[4];
tmp_grey = chosen_greyscale[tmp[3]];
diff1 = labs(bptr[4] - tmp_grey);
diff2 = labs(bptr[4] - bptr[2]);
if (diff1 <= diff2)
{
if (interpolate_2x)
{
uint16 tmp_pixel = tmp[3];
tmp[3] = Q_INTERPOLATE(tmp_pixel, tmp_pixel,
tmp_pixel, center);
tmp[1] = Q_INTERPOLATE(center, center, center, tmp_pixel);
}
}
else
{
if (interpolate_2x)
{
tmp[3] = INTERPOLATE(tmp[3], center);
}
else
{
if (bptr[4] > chosen_greyscale[tmp[3]])
tmp[3] = center;
}
}
}
break;
case 9: /* / */
case 18: /* '/ */
case 19: /* /. */
tmp[0] = tmp[1] = tmp[2] = tmp[3] = center;
if (sub_type != 18)
{
tmp[0] = average_three_pixels(pixels[1], pixels[3], center);
diff1 = calc_pixel_diff_nosqrt(tmp[0], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[0], pixels[3]);
diff3 = calc_pixel_diff_nosqrt(tmp[0], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[0] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[0] = pixels[3];
else
tmp[0] = pixels[4];
if (interpolate_2x)
{
tmp[0] = INTERPOLATE(tmp[0], center);
}
/* sim test is for hyper-cephalic kitten eyes and squeeze toy
* mouse pointer in Sam&Max. Half-diags can be too thin in 2x
* nearest-neighbor, so detect them and don't anti-alias them.
*/
else if (bptr[4] > chosen_greyscale[tmp[0]] ||
(sim_sum == 1 && (sim[2] || sim[5]) &&
pixels[1] == pixels[5] && pixels[3] == pixels[7]))
tmp[0] = center;
}
if (sub_type != 19)
{
tmp[3] = average_three_pixels(pixels[5], pixels[7], center);
diff1 = calc_pixel_diff_nosqrt(tmp[3], pixels[5]);
diff2 = calc_pixel_diff_nosqrt(tmp[3], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[3], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[3] = pixels[5];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[3] = pixels[7];
else
tmp[3] = pixels[4];
if (interpolate_2x)
{
tmp[3] = INTERPOLATE(tmp[3], center);
}
/* sim test is for hyper-cephalic kitten eyes and squeeze toy
* mouse pointer in Sam&Max. Half-diags can be too thin in 2x
* nearest-neighbor, so detect them and don't anti-alias them.
*/
else if (bptr[4] > chosen_greyscale[tmp[3]] ||
(sim_sum == 1 && (sim[2] || sim[5]) &&
pixels[1] == pixels[5] && pixels[3] == pixels[7]))
tmp[3] = center;
}
break;
case 10: /* -' */
tmp[0] = tmp[1] = tmp[2] = center;
tmp[3] = average_three_pixels(pixels[5], pixels[7], center);
tmp_grey = chosen_greyscale[tmp[3]];
#if PARANOID_KNIGHTS
diff1 = labs(bptr[4] - bptr[5]);
diff2 = labs(bptr[4] - bptr[7]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[3] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[3], pixels[5]);
diff2 = calc_pixel_diff_nosqrt(tmp[3], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[3], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[3] = pixels[5];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[3] = pixels[7];
else
tmp[3] = pixels[4];
tmp_grey = chosen_greyscale[tmp[3]];
diff1 = labs(bptr[4] - tmp_grey);
diff2 = labs(bptr[4] - bptr[6]);
if (diff1 <= diff2)
{
if (interpolate_2x)
{
uint16 tmp_pixel = tmp[3];
tmp[3] = Q_INTERPOLATE(tmp_pixel, tmp_pixel,
tmp_pixel, center);
tmp[2] = Q_INTERPOLATE(center, center, center, tmp_pixel);
}
}
else
{
if (interpolate_2x)
{
tmp[3] = INTERPOLATE(tmp[3], center);
}
else
{
if (bptr[4] > chosen_greyscale[tmp[3]])
tmp[3] = center;
}
}
}
break;
case 11: /* .- */
tmp[1] = tmp[2] = tmp[3] = center;
tmp[0] = average_three_pixels(pixels[1], pixels[3], center);
tmp_grey = chosen_greyscale[tmp[0]];
#if PARANOID_KNIGHTS
diff1 = labs(bptr[4] - bptr[3]);
diff2 = labs(bptr[4] - bptr[1]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[0] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[0], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[0], pixels[3]);
diff3 = calc_pixel_diff_nosqrt(tmp[0], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[0] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[0] = pixels[3];
else
tmp[0] = pixels[4];
tmp_grey = chosen_greyscale[tmp[0]];
diff1 = labs(bptr[4] - tmp_grey);
diff2 = labs(bptr[4] - bptr[2]);
if (diff1 <= diff2)
{
if (interpolate_2x)
{
uint16 tmp_pixel = tmp[0];
tmp[0] = Q_INTERPOLATE(tmp_pixel, tmp_pixel,
tmp_pixel, center);
tmp[1] = Q_INTERPOLATE(center, center, center, tmp_pixel);
}
}
else
{
if (interpolate_2x)
{
tmp[0] = INTERPOLATE(tmp[0], center);
}
else
{
if (bptr[4] > chosen_greyscale[tmp[0]])
tmp[0] = center;
}
}
}
break;
case 12: /* < */
tmp[0] = tmp[1] = tmp[2] = tmp[3] = center;
tmp[0] = average_three_pixels(pixels[1], pixels[3], center);
tmp_grey = chosen_greyscale[tmp[0]];
#if PARANOID_ARROWS
diff1 = labs(bptr[4] - bptr[1]);
diff2 = labs(bptr[4] - bptr[3]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[0] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[0], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[0], pixels[3]);
diff3 = calc_pixel_diff_nosqrt(tmp[0], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[0] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[0] = pixels[3];
else
tmp[0] = pixels[4];
/* check for half-arrow */
if (sim_sum == 2 && sim[4] && sim[2])
{
if (interpolate_2x)
{
tmp[0] = INTERPOLATE(center, tmp[0]);
tmp[2] = average_one_third(center, tmp[0]);
}
else
{
if (bptr[4] > chosen_greyscale[tmp[0]])
tmp[0] = center;
}
break;
}
if (interpolate_2x)
tmp[0] = average_one_third(center, tmp[0]);
else
tmp[0] = center;
}
tmp[2] = average_three_pixels(pixels[3], pixels[7], center);
tmp_grey = chosen_greyscale[tmp[2]];
#if PARANOID_ARROWS
diff1 = labs(bptr[4] - bptr[3]);
diff2 = labs(bptr[4] - bptr[7]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[2] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[2], pixels[3]);
diff2 = calc_pixel_diff_nosqrt(tmp[2], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[2], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[2] = pixels[3];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[2] = pixels[7];
else
tmp[2] = pixels[4];
/* check for half-arrow */
if (sim_sum == 2 && sim[4] && sim[7])
{
if (interpolate_2x)
{
tmp[2] = INTERPOLATE(center, tmp[2]);
tmp[0] = average_one_third(center, tmp[2]);
}
else
{
if (bptr[4] > chosen_greyscale[tmp[2]])
tmp[2] = center;
}
break;
}
if (interpolate_2x)
tmp[2] = average_one_third(center, tmp[2]);
else
tmp[2] = center;
}
break;
case 13: /* > */
tmp[0] = tmp[1] = tmp[2] = tmp[3] = center;
tmp[1] = average_three_pixels(pixels[1], pixels[5], center);
tmp_grey = chosen_greyscale[tmp[1]];
#if PARANOID_ARROWS
diff1 = labs(bptr[4] - bptr[5]);
diff2 = labs(bptr[4] - bptr[1]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[1] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[1], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[1], pixels[5]);
diff3 = calc_pixel_diff_nosqrt(tmp[1], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[1] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[1] = pixels[5];
else
tmp[1] = pixels[4];
/* check for half-arrow */
if (sim_sum == 2 && sim[3] && sim[0])
{
if (interpolate_2x)
{
tmp[1] = INTERPOLATE(center, tmp[1]);
tmp[3] = average_one_third(center, tmp[1]);
}
else
{
if (bptr[4] > chosen_greyscale[tmp[1]])
tmp[1] = center;
}
break;
}
if (interpolate_2x)
tmp[1] = average_one_third(center, tmp[1]);
else
tmp[1] = center;
}
tmp[3] = average_three_pixels(pixels[5], pixels[7], center);
tmp_grey = chosen_greyscale[tmp[3]];
#if PARANOID_ARROWS
diff1 = labs(bptr[4] - bptr[7]);
diff2 = labs(bptr[4] - bptr[5]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[3] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[3], pixels[5]);
diff2 = calc_pixel_diff_nosqrt(tmp[3], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[3], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[3] = pixels[5];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[3] = pixels[7];
else
tmp[3] = pixels[4];
/* check for half-arrow */
if (sim_sum == 2 && sim[3] && sim[5])
{
if (interpolate_2x)
{
tmp[3] = INTERPOLATE(center, tmp[3]);
tmp[1] = average_one_third(center, tmp[3]);
}
else
{
if (bptr[4] > chosen_greyscale[tmp[3]])
tmp[3] = center;
}
break;
}
if (interpolate_2x)
tmp[3] = average_one_third(center, tmp[3]);
else
tmp[3] = center;
}
break;
case 14: /* ^ */
tmp[0] = tmp[1] = tmp[2] = tmp[3] = center;
tmp[0] = average_three_pixels(pixels[1], pixels[3], center);
tmp_grey = chosen_greyscale[tmp[0]];
#if PARANOID_ARROWS
diff1 = labs(bptr[4] - bptr[1]);
diff2 = labs(bptr[4] - bptr[3]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[0] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[0], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[0], pixels[3]);
diff3 = calc_pixel_diff_nosqrt(tmp[0], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[0] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[0] = pixels[3];
else
tmp[0] = pixels[4];
/* check for half-arrow */
if (sim_sum == 2 && sim[6] && sim[5])
{
if (interpolate_2x)
{
tmp[0] = INTERPOLATE(center, tmp[0]);
tmp[1] = average_one_third(center, tmp[0]);
}
else
{
if (bptr[4] > chosen_greyscale[tmp[0]])
tmp[0] = center;
}
break;
}
if (interpolate_2x)
tmp[0] = average_one_third(center, tmp[0]);
else
tmp[0] = center;
}
tmp[1] = average_three_pixels(pixels[1], pixels[5], center);
tmp_grey = chosen_greyscale[tmp[1]];
#if PARANOID_ARROWS
diff1 = labs(bptr[4] - bptr[5]);
diff2 = labs(bptr[4] - bptr[1]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[1] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[1], pixels[1]);
diff2 = calc_pixel_diff_nosqrt(tmp[1], pixels[5]);
diff3 = calc_pixel_diff_nosqrt(tmp[1], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[1] = pixels[1];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[1] = pixels[5];
else
tmp[1] = pixels[4];
/* check for half-arrow */
if (sim_sum == 2 && sim[6] && sim[7])
{
if (interpolate_2x)
{
tmp[1] = INTERPOLATE(center, tmp[1]);
tmp[0] = average_one_third(center, tmp[1]);
}
else
{
if (bptr[4] > chosen_greyscale[tmp[1]])
tmp[1] = center;
}
break;
}
if (interpolate_2x)
tmp[1] = average_one_third(center, tmp[1]);
else
tmp[1] = center;
}
break;
case 15: /* v */
tmp[0] = tmp[1] = tmp[2] = tmp[3] = center;
tmp[2] = average_three_pixels(pixels[3], pixels[7], center);
tmp_grey = chosen_greyscale[tmp[2]];
#if PARANOID_ARROWS
diff1 = labs(bptr[4] - bptr[3]);
diff2 = labs(bptr[4] - bptr[7]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[2] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[2], pixels[3]);
diff2 = calc_pixel_diff_nosqrt(tmp[2], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[2], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[2] = pixels[3];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[2] = pixels[7];
else
tmp[2] = pixels[4];
/* check for half-arrow */
if (sim_sum == 2 && sim[1] && sim[0])
{
if (interpolate_2x)
{
tmp[2] = INTERPOLATE(center, tmp[2]);
tmp[3] = average_one_third(center, tmp[2]);
}
else
{
if (bptr[4] > chosen_greyscale[tmp[2]])
tmp[2] = center;
}
break;
}
if (interpolate_2x)
tmp[2] = average_one_third(center, tmp[2]);
else
tmp[2] = center;
}
tmp[3] = average_three_pixels(pixels[5], pixels[7], center);
tmp_grey = chosen_greyscale[tmp[3]];
#if PARANOID_ARROWS
diff1 = labs(bptr[4] - bptr[7]);
diff2 = labs(bptr[4] - bptr[5]);
diff3 = labs(bptr[4] - tmp_grey);
if (diff1 < diff3 || diff2 < diff3)
tmp[3] = center;
else /* choose nearest pixel */
#endif
{
diff1 = calc_pixel_diff_nosqrt(tmp[3], pixels[5]);
diff2 = calc_pixel_diff_nosqrt(tmp[3], pixels[7]);
diff3 = calc_pixel_diff_nosqrt(tmp[3], pixels[4]);
if (diff1 <= diff2 && diff1 <= diff3)
tmp[3] = pixels[5];
else if (diff2 <= diff1 && diff2 <= diff3)
tmp[3] = pixels[7];
else
tmp[3] = pixels[4];
/* check for half-arrow */
if (sim_sum == 2 && sim[1] && sim[2])
{
if (interpolate_2x)
{
tmp[3] = INTERPOLATE(center, tmp[3]);
tmp[2] = average_one_third(center, tmp[3]);
}
else
{
if (bptr[4] > chosen_greyscale[tmp[3]])
tmp[3] = center;
}
break;
}
if (interpolate_2x)
tmp[3] = average_one_third(center, tmp[3]);
else
tmp[3] = center;
}
break;
case -1: /* no edge */
case 0: /* - */
case 6: /* | */
case 127: /* * */
default: /* no edge */
dptr2 = (uint16 *) dptr;
*dptr2++ = center;
#if DEBUG_REFRESH_RANDOM_XOR
*dptr2 = center ^ (uint16) (dxorshift_128() * (1L<<16));
#else
*dptr2 = center;
#endif
dptr2 = (uint16 *) (dptr + dstPitch);
*dptr2++ = center;
*dptr2 = center;
return;
break;
}
ptmp = tmp;
dptr2 = (uint16 *) dptr;
*dptr2++ = *ptmp++;
#if DEBUG_REFRESH_RANDOM_XOR
*dptr2 = *ptmp++ ^ (uint16) (dxorshift_128() * (1L<<16));
#else
*dptr2 = *ptmp++;
#endif
dptr2 = (uint16 *) (dptr + dstPitch);
*dptr2++ = *ptmp++;
*dptr2 = *ptmp;
}
#if HANDLE_TRANSPARENT_OVERLAYS
/* Deal with transparent pixels */
void handle_transparent_overlay(uint16 transp, uint16 *pixels,
int16 *bplane, int16 *diffs)
{
int16 tmp_grey;
int16 max_diff;
int16 min_grey = ((int16)1<<RGB_SHIFT);
int16 max_grey = 0;
int i;
/* find min and max grey values in window */
for (i = 0; i < 9; i++)
{
if (bplane[i] < min_grey) min_grey = bplane[i];
if (bplane[i] > max_grey) max_grey = bplane[i];
}
/* treat transparent pixels as the average of min_grey and max_grey */
/* set diff from center pixel to maximum difference within the window */
tmp_grey = (min_grey + max_grey + 1) >> 1;
max_diff = max_grey - min_grey;
if (pixels[4] == transp) /* center pixel is transparent */
{
/* set all transparent pixels to middle grey */
if (pixels[0] == transp) bplane[0] = tmp_grey;
if (pixels[1] == transp) bplane[1] = tmp_grey;
if (pixels[2] == transp) bplane[2] = tmp_grey;
if (pixels[3] == transp) bplane[3] = tmp_grey;
if (pixels[4] == transp) bplane[4] = tmp_grey;
if (pixels[5] == transp) bplane[5] = tmp_grey;
if (pixels[6] == transp) bplane[6] = tmp_grey;
if (pixels[7] == transp) bplane[7] = tmp_grey;
if (pixels[8] == transp) bplane[8] = tmp_grey;
/* set all diffs to non-transparent pixels to max diff */
if (pixels[0] != transp) diffs[0] = max_diff;
if (pixels[1] != transp) diffs[1] = max_diff;
if (pixels[2] != transp) diffs[2] = max_diff;
if (pixels[3] != transp) diffs[3] = max_diff;
if (pixels[5] != transp) diffs[4] = max_diff;
if (pixels[6] != transp) diffs[5] = max_diff;
if (pixels[7] != transp) diffs[6] = max_diff;
if (pixels[8] != transp) diffs[7] = max_diff;
}
else /* center pixel is non-transparent */
{
/* choose transparent grey value to give largest contrast */
tmp_grey = (bplane[4] >= tmp_grey) ? min_grey : max_grey;
/* set new transparent pixel values and diffs */
if (pixels[0] == transp)
{
bplane[0] = tmp_grey;
diffs[0] = max_diff;
}
if (pixels[1] == transp)
{
bplane[1] = tmp_grey;
diffs[1] = max_diff;
}
if (pixels[2] == transp)
{
bplane[2] = tmp_grey;
diffs[2] = max_diff;
}
if (pixels[3] == transp)
{
bplane[3] = tmp_grey;
diffs[3] = max_diff;
}
if (pixels[5] == transp)
{
bplane[5] = tmp_grey;
diffs[4] = max_diff;
}
if (pixels[6] == transp)
{
bplane[6] = tmp_grey;
diffs[5] = max_diff;
}
if (pixels[7] == transp)
{
bplane[7] = tmp_grey;
diffs[6] = max_diff;
}
if (pixels[8] == transp)
{
bplane[8] = tmp_grey;
diffs[7] = max_diff;
}
}
}
#endif
/* Check for changed pixel grid, return 1 if unchanged. */
int check_unchanged_pixels(uint16 *old_src_ptr, uint16 *pixels, int w)
{
uint16 *dptr16;
dptr16 = old_src_ptr - w - 1;
if (*dptr16++ != pixels[0]) return 0;
if (*dptr16++ != pixels[1]) return 0;
if (*dptr16 != pixels[2]) return 0;
dptr16 += w - 2;
if (*dptr16 != pixels[3]) return 0;
dptr16 += 2;
if (*dptr16 != pixels[5]) return 0;
dptr16 += w - 2;
if (*dptr16++ != pixels[6]) return 0;
if (*dptr16++ != pixels[7]) return 0;
if (*dptr16 != pixels[8]) return 0;
return 1;
}
/* Draw unchanged pixel grid, 3x */
/* old_dptr16 starts in top left of grid, dptr16 in center */
void draw_unchanged_grid_3x(uint16 *dptr16, int dstPitch,
uint16 *old_dptr16, int old_dst_inc)
{
uint16 *sptr;
uint16 *dptr;
uint8 *dptr8 = (uint8 *) dptr16;
sptr = old_dptr16;
dptr = (uint16 *) (dptr8 - dstPitch) - 1;
*dptr++ = *sptr++;
*dptr++ = *sptr++;
*dptr = *sptr;
sptr = old_dptr16 + old_dst_inc;
dptr = dptr16 - 1;
*dptr++ = *sptr++;
*dptr++ = *sptr++;
*dptr = *sptr;
sptr = old_dptr16 + old_dst_inc + old_dst_inc;
dptr = (uint16 *) (dptr8 + dstPitch) - 1;
*dptr++ = *sptr++;
*dptr++ = *sptr++;
*dptr = *sptr;
}
/* Draw unchanged pixel grid, 2x */
void draw_unchanged_grid_2x(uint16 *dptr16, int dstPitch,
uint16 *old_dptr16, int old_dst_inc)
{
uint16 *sptr;
uint16 *dptr;
uint8 *dptr8 = (uint8 *) dptr16;
sptr = old_dptr16;
dptr = dptr16;
*dptr++ = *sptr++;
*dptr = *sptr;
sptr = old_dptr16 + old_dst_inc;
dptr = (uint16 *) (dptr8 + dstPitch);
*dptr++ = *sptr++;
*dptr = *sptr;
}
/* Perform edge detection, draw the new 3x pixels */
void anti_alias_pass_3x(const uint8 *src, uint8 *dst,
int w, int h, int w_new, int h_new,
int srcPitch, int dstPitch,
int overlay_flag)
{
int x, y;
int w2 = w + 2;
const uint8 *sptr8 = src;
uint8 *dptr8 = dst + dstPitch + 2;
const uint16 *sptr16;
uint16 *dptr16;
int16 *bplane;
int8 sim[8];
int sub_type;
int32 angle;
int16 *diffs;
int dstPitch3 = dstPitch * 3;
uint16 *old_src_ptr, *old_dst_ptr;
uint16 *old_sptr16, *old_dptr16;
int32 dist, old_src_y, old_src_x;
int old_src_inc;
int old_dst_inc, old_dst_inc3;
if (overlay_flag)
{
old_src_ptr = old_overlay + w2 + 1;
old_src_inc = w2;
old_dst_ptr = old_dst_overlay;
old_dst_inc = w_new;
}
else
{
dist = src - (const uint8 *) src_addr_min;
old_src_y = dist / srcPitch;
old_src_x = (dist - old_src_y * srcPitch) >> 1;
old_src_inc = cur_screen_width + 2;
old_src_ptr = old_src + (old_src_y + 1) * old_src_inc + old_src_x + 1;
old_dst_inc = 3 * cur_screen_width;
old_dst_ptr = old_dst + 3 * (old_src_y * old_dst_inc + old_src_x);
}
old_dst_inc3 = 3 * old_dst_inc;
#if 0
#if HANDLE_TRANSPARENT_OVERLAYS
uint16 transp = 0; /* transparent color */
/* assume bitmap is padded by a transparent border, take src-1 pixel */
if (overlay_flag) transp = *((const uint16 *) src - 1);
#endif
/* The dirty rects optimizer in the SDL backend is helpful for frames
* with few changes, but _REALLY_ bogs things down when the whole screen
* changes. Overall, the dirty rects optimizer isn't worth it, since
* the Edge2x/3x unchanged pixel detection is far faster than full blown
* dirty rects optimization.
*/
g_system->setFeatureState(g_system->kFeatureAutoComputeDirtyRects, 0);
#endif
for (y = 0; y < h; y++, sptr8 += srcPitch, dptr8 += dstPitch3,
old_src_ptr += old_src_inc, old_dst_ptr += old_dst_inc3)
{
for (x = 0,
sptr16 = (const uint16 *) sptr8,
dptr16 = (uint16 *) dptr8,
old_sptr16 = old_src_ptr,
old_dptr16 = old_dst_ptr;
x < w; x++, sptr16++, dptr16 += 3, old_sptr16++, old_dptr16 += 3)
{
const uint16 *sptr2, *addr3;
uint16 pixels[9];
char edge_type;
sptr2 = ((const uint16 *) ((const uint8 *) sptr16 - srcPitch)) - 1;
addr3 = ((const uint16 *) ((const uint8 *) sptr16 + srcPitch)) + 1;
/* fill the 3x3 grid */
memcpy(pixels, sptr2, 3*sizeof(uint16));
memcpy(pixels+3, sptr16 - 1, 3*sizeof(uint16));
memcpy(pixels+6, addr3 - 2, 3*sizeof(uint16));
#if 0
/* skip interior unchanged 3x3 blocks */
if (*sptr16 == *old_sptr16 &&
#if DEBUG_DRAW_REFRESH_BORDERS
x > 0 && x < w - 1 && y > 0 && y < h - 1 &&
#endif
check_unchanged_pixels(old_sptr16, pixels, old_src_inc))
{
draw_unchanged_grid_3x(dptr16, dstPitch, old_dptr16,
old_dst_inc);
#if DEBUG_REFRESH_RANDOM_XOR
*(dptr16 + 1) = 0;
#endif
continue;
}
#endif
diffs = choose_greyscale(pixels);
/* block of solid color */
if (!diffs)
{
anti_alias_grid_clean_3x((uint8 *) dptr16, dstPitch, pixels,
0, NULL);
continue;
}
#if 0
#if HANDLE_TRANSPARENT_OVERLAYS
if (overlay_flag)
handle_transparent_overlay(transp, pixels, bplane, diffs);
#endif
#endif
bplane = bptr_global;
edge_type = find_principle_axis(pixels, diffs, bplane,
sim, &angle);
sub_type = refine_direction(edge_type, pixels, bplane,
sim, angle);
if (sub_type >= 0)
sub_type = fix_knights(sub_type, pixels, sim);
anti_alias_grid_clean_3x((uint8 *) dptr16, dstPitch, pixels,
sub_type, bplane);
}
}
}
/* Perform edge detection, draw the new 2x pixels */
void anti_alias_pass_2x(const uint8 *src, uint8 *dst,
int w, int h, int w_new, int h_new,
int srcPitch, int dstPitch,
int overlay_flag,
int interpolate_2x)
{
int x, y;
int w2 = w + 2;
const uint8 *sptr8 = src;
uint8 *dptr8 = dst;
const uint16 *sptr16;
uint16 *dptr16;
int16 *bplane;
int8 sim[8];
int sub_type;
int32 angle;
int16 *diffs;
int dstPitch2 = dstPitch << 1;
uint16 *old_src_ptr, *old_dst_ptr;
uint16 *old_sptr16, *old_dptr16;
int32 dist, old_src_y, old_src_x;
int old_src_inc;
int old_dst_inc, old_dst_inc2;
if (overlay_flag)
{
old_src_ptr = old_overlay + w2 + 1;
old_src_inc = w2;
old_dst_ptr = old_dst_overlay;
old_dst_inc = w_new;
}
else
{
dist = src - (const uint8 *) src_addr_min;
old_src_y = dist / srcPitch;
old_src_x = (dist - old_src_y * srcPitch) >> 1;
old_src_inc = cur_screen_width + 2;
old_src_ptr = old_src + (old_src_y + 1) * old_src_inc + old_src_x + 1;
old_dst_inc = 2 * cur_screen_width;
old_dst_ptr = old_dst + 2 * (old_src_y * old_dst_inc + old_src_x);
}
old_dst_inc2 = 2 * old_dst_inc;
#if 0
#if HANDLE_TRANSPARENT_OVERLAYS
uint16 transp = 0; /* transparent color */
/* assume bitmap is padded by a transparent border, take src-1 pixel */
if (overlay_flag) transp = *((const uint16 *) src - 1);
#endif
/* The dirty rects optimizer in the SDL backend is helpful for frames
* with few changes, but _REALLY_ bogs things down when the whole screen
* changes. Overall, the dirty rects optimizer isn't worth it, since
* the Edge2x/3x unchanged pixel detection is far faster than full blown
* dirty rects optimization.
*/
g_system->setFeatureState(g_system->kFeatureAutoComputeDirtyRects, 0);
#endif
for (y = 0; y < h; y++, sptr8 += srcPitch, dptr8 += dstPitch2,
old_src_ptr += old_src_inc, old_dst_ptr += old_dst_inc2)
{
for (x = 0,
sptr16 = (const uint16 *) sptr8,
dptr16 = (uint16 *) dptr8,
old_sptr16 = old_src_ptr,
old_dptr16 = old_dst_ptr;
x < w; x++, sptr16++, dptr16 += 2, old_sptr16++, old_dptr16 += 2)
{
const uint16 *sptr2, *addr3;
uint16 pixels[9];
char edge_type;
sptr2 = ((const uint16 *) ((const uint8 *) sptr16 - srcPitch)) - 1;
addr3 = ((const uint16 *) ((const uint8 *) sptr16 + srcPitch)) + 1;
/* fill the 3x3 grid */
memcpy(pixels, sptr2, 3*sizeof(uint16));
memcpy(pixels+3, sptr16 - 1, 3*sizeof(uint16));
memcpy(pixels+6, addr3 - 2, 3*sizeof(uint16));
#if 0
/* skip interior unchanged 3x3 blocks */
if (*sptr16 == *old_sptr16 &&
#if DEBUG_DRAW_REFRESH_BORDERS
x > 0 && x < w - 1 && y > 0 && y < h - 1 &&
#endif
check_unchanged_pixels(old_sptr16, pixels, old_src_inc))
{
draw_unchanged_grid_2x(dptr16, dstPitch, old_dptr16,
old_dst_inc);
#if DEBUG_REFRESH_RANDOM_XOR
*(dptr16 + 1) = 0;
#endif
continue;
}
#endif
diffs = choose_greyscale(pixels);
/* block of solid color */
if (!diffs)
{
anti_alias_grid_2x((uint8 *) dptr16, dstPitch, pixels,
0, NULL, NULL, 0);
continue;
}
#if 0
#if HANDLE_TRANSPARENT_OVERLAYS
if (overlay_flag)
handle_transparent_overlay(transp, pixels, bplane, diffs);
#endif
#endif
bplane = bptr_global;
edge_type = find_principle_axis(pixels, diffs, bplane,
sim, &angle);
sub_type = refine_direction(edge_type, pixels, bplane,
sim, angle);
if (sub_type >= 0)
sub_type = fix_knights(sub_type, pixels, sim);
anti_alias_grid_2x((uint8 *) dptr16, dstPitch, pixels,
sub_type, bplane, sim,
interpolate_2x);
}
}
}
/* Initialize various lookup tables */
void init_tables(const uint8 *srcPtr, uint32 srcPitch,
int width, int height)
{
double r_float, g_float, b_float;
int r, g, b;
uint16 i;
double val[3];
double intensity;
int16 *rgb_ptr;
#if DEBUG_REFRESH_RANDOM_XOR
/* seed the random number generator, we don't care if the seed is random */
initialize_xorshift_128(42);
#endif
/* initialize greyscale table */
for (r = 0; r < 32; r++) {
r_float = r / 31.0;
for (g = 0; g < 64; g++) {
g_float = g / 63.0;
for (b = 0; b < 32; b++) {
b_float = b / 31.0;
intensity = (r_float + g_float + b_float) / 3;
i = (r << 11) | (g << 5) | b;
/* use luma-like weights for each color, 2x increments */
val[0] = 0.571 * r_float + 0.286 * g_float + 0.143 * b_float;
val[1] = 0.286 * r_float + 0.571 * g_float + 0.143 * b_float;
val[2] = 0.143 * r_float + 0.286 * g_float + 0.571 * b_float;
/* factor in a little intensity too, it helps */
val[0] = (intensity + 9*val[0]) / 10;
val[1] = (intensity + 9*val[1]) / 10;
val[2] = (intensity + 9*val[2]) / 10;
/* store the greyscale tables */
greyscale_table[0][i] = (int16) (val[0] * ((int16)1<<GREY_SHIFT) + 0.5);
greyscale_table[1][i] = (int16) (val[1] * ((int16)1<<GREY_SHIFT) + 0.5);
greyscale_table[2][i] = (int16) (val[2] * ((int16)1<<GREY_SHIFT) + 0.5);
/* normalized RGB channel lookups */
rgb_ptr = rgb_table[(r << 11) | (g << 5) | b];
rgb_ptr[0] = (int16) (r_float * ((int16)1<<RGB_SHIFT) + 0.5);
rgb_ptr[1] = (int16) (g_float * ((int16)1<<RGB_SHIFT) + 0.5);
rgb_ptr[2] = (int16) (b_float * ((int16)1<<RGB_SHIFT) + 0.5);
}
}
}
/* initialize interpolation division tables */
for (r = 0; r <= 189; r++)
div3[r] = ((r<<1)+3) / 6;
for (r = 0; r <= 567; r++)
div9[r] = ((r<<1)+9) / 18;
#if 0
#if INCREASE_WIN32_PRIORITY
/*
* Greatly increase thread and process priority under Win32.
*
* -- WARNING -- WinXP has a rather poor priority system, it's basicly
* "largely ignore me", "normal", or "interfere with some system processes".
* At least Win9x/ME had "increased" and "decreased" modes, but now those API
* functions aren't "supported" in WinNT/2K/XP, and we're stuck with the mess
* we have now. "Normal" is preempted by so much other unimportant stuff,
* including the idle process, that ScummVM never gets above 75% CPU usage,
* even when the filter is overworked and the frame rate is getting jerky.
* Massively increasing BOTH the process and thread priorities (need to boost
* the process priority to keep audio in sync with the increased thread
* priority when the frame rate gets jerky) beats Windows into giving the
* program the time it needs, however, doing things outside ScummVM may be
* sluggish. I recommend pausing ScummVM prior to shrinking from full-screen
* to a window, or before switching from ScummVM to some other task. Other
* than the above mentioned sluggishness, I have not seen any other sort of
* system instability while running with increased priorities.
*
*/
/* Rather than check for all Win32 compiler flavors, just check for WIN32 and
* PRIORITY defines.
*/
#if defined WIN32 && defined(HIGH_PRIORITY_CLASS) && defined(THREAD_PRIORITY_TIME_CRITICAL)
/* Raise task and thread priority under Win32 */
SetPriorityClass(GetCurrentProcess(), HIGH_PRIORITY_CLASS);
SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_TIME_CRITICAL);
#endif
#endif
#endif
}
/*
* Resize old src and dst arrays. Also check for problems that require full
* redraws, rather than using the unchanged pixel buffering. If the ScummVM
* backend evolves to draw even more things outside the filter than it
* currently does, some more checks may need to be added, or external flags
* set in the backend to tell the filter to redraw everything without using
* the unchanged pixel buffers. The current checks seem to catch everything
* for now....
*
*/
void resize_old_arrays(const uint8 *src, uint8 *dst,
int w, int h, int scale)
{
int w2, h2;
int32 size, max_scaled_size;
const uint16 *sptr16 = (const uint16 *) src;
int overlay_flag = 0;
int skip_unchanged_pixels_flag;
if (sptr16 < src_addr_min || sptr16 > src_addr_max)
overlay_flag = 1;
if (scale > max_scale) max_scale = scale;
/* Deal with overlays */
if (overlay_flag)
{
skip_unchanged_pixels_flag = 1;
w2 = w + 2;
h2 = h + 2;
size = w2 * h2;
if (size > max_overlay_size)
{
max_overlay_size = size;
old_overlay = (uint16 *) realloc(old_overlay,
size * sizeof(uint16));
skip_unchanged_pixels_flag = 0;
}
max_scaled_size = max_scale * max_scale * max_overlay_size;
if (max_scaled_size > max_dst_overlay_size)
{
max_dst_overlay_size = max_scaled_size;
old_dst_overlay = (uint16 *) realloc(old_dst_overlay,
max_scaled_size * sizeof(uint16));
skip_unchanged_pixels_flag = 0;
}
cur_overlay_width = w;
cur_overlay_height = h;
cur_dst_overlay_width = w * scale;
cur_dst_overlay_height = h * scale;
if (cur_overlay_width != old_overlay_width ||
cur_overlay_height != old_overlay_height ||
cur_dst_overlay_width != old_dst_overlay_width ||
cur_dst_overlay_height != old_dst_overlay_height)
{
skip_unchanged_pixels_flag = 0;
}
old_overlay_width = cur_overlay_width;
old_overlay_height = cur_overlay_height;
old_dst_overlay_width = cur_dst_overlay_width;
old_dst_overlay_height = cur_dst_overlay_height;
if (skip_unchanged_pixels_flag == 0)
{
memset(old_overlay, 0, max_overlay_size * sizeof(uint16));
memset(old_dst_overlay, 0, max_dst_overlay_size * sizeof(uint16));
}
}
else
{
w2 = cur_screen_width + 2;
h2 = cur_screen_height + 2;
size = w2 * h2;
}
skip_unchanged_pixels_flag = 1;
if (overlay_flag == 0 && size > max_old_src_size)
{
max_old_src_size = size;
old_src = (uint16 *) realloc(old_src, size * sizeof(uint16));
skip_unchanged_pixels_flag = 0;
}
max_scaled_size = max_scale * max_scale * max_old_src_size;
if (overlay_flag == 0 && max_scaled_size > max_old_dst_size)
{
max_old_dst_size = max_scaled_size;
old_dst = (uint16 *) realloc(old_dst,
max_scaled_size * sizeof(uint16));
skip_unchanged_pixels_flag = 0;
}
/* screen dimensions have changed */
if (cur_screen_width != old_screen_width ||
cur_screen_height != old_screen_height)
{
skip_unchanged_pixels_flag = 0;
}
old_screen_width = cur_screen_width;
old_screen_height = cur_screen_height;
cur_dst_screen_width = cur_screen_width * scale;
cur_dst_screen_height = cur_screen_height * scale;
if (cur_dst_screen_width != old_dst_screen_width ||
cur_dst_screen_height != old_dst_screen_height)
{
skip_unchanged_pixels_flag = 0;
}
old_dst_screen_width = cur_dst_screen_width;
old_dst_screen_height = cur_dst_screen_height;
/* set all the buffers to 0, so that everything gets redrawn */
if (skip_unchanged_pixels_flag == 0)
{
memset(old_src, 0, max_old_src_size * sizeof(uint16));
memset(old_dst, 0, max_old_dst_size * sizeof(uint16));
memset(old_overlay, 0, max_overlay_size * sizeof(uint16));
memset(old_dst_overlay, 0, max_dst_overlay_size * sizeof(uint16));
}
}
/* Fill old src array, which is used in checking for unchanged pixels */
void fill_old_src(const uint8 *src, int srcPitch, int w, int h)
{
int x, y;
int x2, y2;
const uint16 *sptr16 = (const uint16 *) src;
const uint16 *sptr2;
uint16 *optr16;
int32 screen_width2 = cur_screen_width + 2;
int32 dist = src - (const uint8 *) src_addr_min;
int32 x_fudge;
int32 src_fudge;
/* Deal with overlays */
if (sptr16 < src_addr_min || sptr16 > src_addr_max)
{
w += 2;
h += 2;
optr16 = old_overlay;
sptr2 = (const uint16 *) (src - srcPitch) - 1;
x_fudge = 0;
src_fudge = srcPitch - w - w;
}
else
{
y = dist / srcPitch;
x = (dist - y * srcPitch) >> 1;
optr16 = old_src + (y + 1) * screen_width2 + x + 1;
sptr2 = (const uint16 *) src;
x_fudge = screen_width2 - w;
src_fudge = srcPitch - w - w;
}
for (y2 = 0; y2 < h; y2++)
{
for (x2 = 0; x2 < w; x2++)
*optr16++ = *sptr2++;
optr16 += x_fudge;
sptr2 = (const uint16 *) ((const uint8 *) sptr2 + src_fudge);
}
}
/* Fill old dst array, which is used in drawing unchanged pixels */
void fill_old_dst(const uint8 *src, uint8 *dst, int srcPitch, int dstPitch,
int w, int h, int scale)
{
int x, y;
int x2, y2;
const uint16 *sptr16 = (const uint16 *) src;
uint16 *dptr2;
uint16 *optr16;
int32 screen_width_scaled = cur_screen_width * scale;
int32 dist;
int w_new = w * scale;
int h_new = h * scale;
int32 x_fudge;
int32 dst_fudge;
/* Deal with overlays */
if (sptr16 < src_addr_min || sptr16 > src_addr_max)
{
optr16 = old_dst_overlay;
dptr2 = (uint16 *) dst;
x_fudge = 0;
dst_fudge = dstPitch - w_new - w_new;
}
else
{
dist = src - (const uint8 *) src_addr_min;
y = dist / srcPitch;
x = (dist - y * srcPitch) >> 1;
optr16 = old_dst + scale * (y * screen_width_scaled + x);
dptr2 = (uint16 *) dst;
x_fudge = screen_width_scaled - w_new;
dst_fudge = dstPitch - w_new - w_new;
}
for (y2 = 0; y2 < h_new; y2++)
{
for (x2 = 0; x2 < w_new; x2++)
*optr16++ = *dptr2++;
optr16 += x_fudge;
dptr2 = (uint16 *) ((uint8 *) dptr2 + dst_fudge);
}
}
/* 3x anti-aliased resize filter, nearest-neighbor anti-aliasing */
void Edge3x(const uint8 *srcPtr, uint32 srcPitch,
uint8 *dstPtr, uint32 dstPitch, int width, int height)
{
/* Initialize stuff */
if (!init_flag)
{
cur_screen_width = g_system->getWidth();
cur_screen_height = g_system->getHeight();
/* set initial best guess on min/max screen addresses */
/* indent by 1 in case only the mouse is ever drawn */
src_addr_min = (const uint16 *) srcPtr + 1;
src_addr_max = ((const uint16 *) (srcPtr + (height - 1) *
srcPitch)) + (width - 1) - 1;
init_tables(srcPtr, srcPitch, width, height);
init_flag = 1;
}
/* Uh oh, the screen size has changed */
if (cur_screen_width != g_system->getWidth() ||
cur_screen_height != g_system->getHeight())
{
cur_screen_width = g_system->getWidth();
cur_screen_height = g_system->getHeight();
src_addr_min = (const uint16 *) srcPtr;
src_addr_max = ((const uint16 *) (srcPtr + (height - 1) * srcPitch)) +
(width - 1);
}
/* Ah ha, we're doing the whole screen, so we can save the bounds of the
src array for later bounds checking */
if (width == g_system->getWidth() &&
height == g_system->getHeight())
{
src_addr_min = (const uint16 *) srcPtr;
src_addr_max = ((const uint16 *) (srcPtr + (height - 1) * srcPitch)) +
(width - 1);
}
/* resize and/or blank the old src and dst array */
resize_old_arrays(srcPtr, dstPtr, width, height, 3);
/* Hmm, the src address isn't within the proper bounds.
* We're probably drawing an overlay now.
*/
if ((const uint16 *) srcPtr < src_addr_min ||
(const uint16 *) srcPtr > src_addr_max)
{
anti_alias_pass_3x(srcPtr, dstPtr, width, height,
3*width, 3*height, srcPitch, dstPitch, 1);
}
else /* Draw the regular screen, this isn't an overlay. */
{
anti_alias_pass_3x(srcPtr, dstPtr, width, height,
3*width, 3*height, srcPitch, dstPitch, 0);
}
/* fill old src array */
fill_old_src(srcPtr, srcPitch, width, height);
fill_old_dst(srcPtr, dstPtr, srcPitch, dstPitch, width, height, 3);
}
/* 2x anti-aliased resize filter, nearest-neighbor anti-aliasing */
void Edge2x(const uint8 *srcPtr, uint32 srcPitch,
uint8 *dstPtr, uint32 dstPitch, int width, int height)
{
/* Initialize stuff */
if (!init_flag)
{
cur_screen_width = g_system->getWidth();
cur_screen_height = g_system->getHeight();
/* set initial best guess on min/max screen addresses */
/* indent by 1 in case only the mouse is ever drawn */
src_addr_min = (const uint16 *) srcPtr + 1;
src_addr_max = ((const uint16 *) (srcPtr + (height - 1) *
srcPitch)) + (width - 1) - 1;
init_tables(srcPtr, srcPitch, width, height);
init_flag = 1;
}
/* Uh oh, the screen size has changed */
if (cur_screen_width != g_system->getWidth() ||
cur_screen_height != g_system->getHeight())
{
cur_screen_width = g_system->getWidth();
cur_screen_height = g_system->getHeight();
src_addr_min = (const uint16 *) srcPtr;
src_addr_max = ((const uint16 *) (srcPtr + (height - 1) * srcPitch)) +
(width - 1);
}
/* Ah ha, we're doing the whole screen, so we can save the bounds of the
src array for later bounds checking */
if (width == g_system->getWidth() &&
height == g_system->getHeight())
{
src_addr_min = (const uint16 *) srcPtr;
src_addr_max = ((const uint16 *) (srcPtr + (height - 1) * srcPitch)) +
(width - 1);
}
/* resize and/or blank the old src and dst array */
resize_old_arrays(srcPtr, dstPtr, width, height, 2);
/* Hmm, the src address isn't within the proper bounds.
* We're probably drawing an overlay now.
*/
if ((const uint16 *) srcPtr < src_addr_min ||
(const uint16 *) srcPtr > src_addr_max)
{
anti_alias_pass_2x(srcPtr, dstPtr, width, height,
2*width, 2*height, srcPitch, dstPitch, 1, 0);
}
else /* Draw the regular screen, this isn't an overlay. */
{
anti_alias_pass_2x(srcPtr, dstPtr, width, height,
2*width, 2*height, srcPitch, dstPitch, 0, 0);
}
/* fill old src array */
fill_old_src(srcPtr, srcPitch, width, height);
fill_old_dst(srcPtr, dstPtr, srcPitch, dstPitch, width, height, 2);
}
/*
* 2x anti-aliased resize filter, interpolation based anti-aliasing.
* This is useful prior to upsizing with the 1.5x filter for the menu
* overlay. Nearest-neighbor looks bad with 1.5x resize. Interpolated gives
* results that look good, like a somewhat blurry Edge3x.
*
*/
void Edge2x_Interp(const uint8 *srcPtr, uint32 srcPitch,
uint8 *dstPtr, uint32 dstPitch, int width, int height)
{
/* Initialize stuff */
if (!init_flag)
{
cur_screen_width = g_system->getWidth();
cur_screen_height = g_system->getHeight();
/* set initial best guess on min/max screen addresses */
/* indent by 1 in case only the mouse is ever drawn */
src_addr_min = (const uint16 *) srcPtr + 1;
src_addr_max = ((const uint16 *) (srcPtr + (height - 1) *
srcPitch)) + (width - 1) - 1;
init_tables(srcPtr, srcPitch, width, height);
init_flag = 1;
}
/* Uh oh, the screen size has changed */
if (cur_screen_width != g_system->getWidth() ||
cur_screen_height != g_system->getHeight())
{
cur_screen_width = g_system->getWidth();
cur_screen_height = g_system->getHeight();
src_addr_min = (const uint16 *) srcPtr;
src_addr_max = ((const uint16 *) (srcPtr + (height - 1) * srcPitch)) +
(width - 1);
}
/* Ah ha, we're doing the whole screen, so we can save the bounds of the
src array for later bounds checking */
if (width == g_system->getWidth() &&
height == g_system->getHeight())
{
src_addr_min = (const uint16 *) srcPtr;
src_addr_max = ((const uint16 *) (srcPtr + (height - 1) * srcPitch)) +
(width - 1);
}
/* resize and/or blank the old src and dst array */
resize_old_arrays(srcPtr, dstPtr, width, height, 2);
/* Hmm, the src address isn't within the proper bounds.
* We're probably drawing an overlay now.
*/
if ((const uint16 *) srcPtr < src_addr_min ||
(const uint16 *) srcPtr > src_addr_max)
{
anti_alias_pass_2x(srcPtr, dstPtr, width, height,
2*width, 2*height, srcPitch, dstPitch, 1, 0);
}
else /* Draw the regular screen, this isn't an overlay. */
{
anti_alias_pass_2x(srcPtr, dstPtr, width, height,
2*width, 2*height, srcPitch, dstPitch, 0, 1);
}
/* fill old src array */
fill_old_src(srcPtr, srcPitch, width, height);
fill_old_dst(srcPtr, dstPtr, srcPitch, dstPitch, width, height, 2);
}
EdgePlugin::EdgePlugin() {
_factor = 2;
_factors.push_back(2);
_factors.push_back(3);
}
void EdgePlugin::initialize(Graphics::PixelFormat format) {
_format = format;
init_tables(0, 0, 0, 0);
}
void EdgePlugin::deinitialize() {
}
void EdgePlugin::scale(const uint8 *srcPtr, uint32 srcPitch,
uint8 *dstPtr, uint32 dstPitch, int width, int height, int x, int y) {
if (_format.bytesPerPixel == 2) {
if (_factor == 2)
anti_alias_pass_2x(srcPtr, dstPtr, width, height, 2*width, 2*height, srcPitch, dstPitch, 0, 1);
else
anti_alias_pass_3x(srcPtr, dstPtr, width, height, 3*width, 3*height, srcPitch, dstPitch, 0);
} else {
warning("FIXME: EdgePlugin 32bpp format");
}
}
uint EdgePlugin::increaseFactor() {
if (_factor == 2)
++_factor;
return _factor;
}
uint EdgePlugin::decreaseFactor() {
if (_factor == 3)
--_factor;
return _factor;
}
const char *EdgePlugin::getName() const {
return "edge";
}
const char *EdgePlugin::getPrettyName() const {
return "Edge";
}
REGISTER_PLUGIN_STATIC(EDGE, PLUGIN_TYPE_SCALER, EdgePlugin);