* Implemented WalkingMap::findNearestWalkable() which mimics a heuristic from the original game that attempts to find walkable spots near the given point
* Implemented moving to the right place when looking / using objects. svn-id: r43125
This commit is contained in:
parent
fc6ff00cbc
commit
19d5d66fd7
2 changed files with 124 additions and 1 deletions
|
@ -38,6 +38,7 @@ namespace Draci {
|
|||
static double real_to_double(byte real[6]);
|
||||
|
||||
Game::Game(DraciEngine *vm) : _vm(vm) {
|
||||
|
||||
unsigned int i;
|
||||
|
||||
BArchive *initArchive = _vm->_initArchive;
|
||||
|
@ -283,6 +284,15 @@ void Game::loop() {
|
|||
|
||||
_vm->_mouse->cursorOff();
|
||||
_vm->_mouse->lButtonSet(false);
|
||||
|
||||
if (!obj->_imLook) {
|
||||
if (obj->_lookDir == 0) {
|
||||
walkHero(x, y);
|
||||
} else {
|
||||
walkHero(obj->_lookX, obj->_lookY);
|
||||
}
|
||||
}
|
||||
|
||||
_vm->_script->run(obj->_program, obj->_look);
|
||||
_vm->_mouse->cursorOn();
|
||||
}
|
||||
|
@ -293,6 +303,15 @@ void Game::loop() {
|
|||
|
||||
_vm->_mouse->cursorOff();
|
||||
_vm->_mouse->rButtonSet(false);
|
||||
|
||||
if (!obj->_imUse) {
|
||||
if (obj->_useDir == 0) {
|
||||
walkHero(x, y);
|
||||
} else {
|
||||
walkHero(obj->_useX, obj->_useY);
|
||||
}
|
||||
}
|
||||
|
||||
_vm->_script->run(obj->_program, obj->_use);
|
||||
_vm->_mouse->cursorOn();
|
||||
}
|
||||
|
@ -311,7 +330,6 @@ void Game::loop() {
|
|||
// If the player clicked on a walkable position and we are in the
|
||||
// appropriate loop status, move the dragon there
|
||||
if (_vm->_mouse->lButtonPressed() &&
|
||||
_currentRoom._walkingMap.isWalkable(x, y) &&
|
||||
_loopSubstatus == kStatusOrdinary) {
|
||||
|
||||
walkHero(x, y);
|
||||
|
@ -375,6 +393,13 @@ int Game::getObjectWithAnimation(int animID) {
|
|||
}
|
||||
|
||||
void Game::walkHero(int x, int y) {
|
||||
|
||||
Surface *surface = _vm->_screen->getSurface();
|
||||
Common::Point p = _currentRoom._walkingMap.findNearestWalkable(x, y, surface->getRect());
|
||||
|
||||
x = p.x;
|
||||
y = p.y;
|
||||
|
||||
// Fetch dragon's animation ID
|
||||
// FIXME: Need to add proper walking (this only warps the dragon to position)
|
||||
int animID = getObject(kDragonObject)->_anims[0];
|
||||
|
@ -852,6 +877,103 @@ bool WalkingMap::isWalkable(int x, int y) {
|
|||
return mapByte & (1 << pixelIndex % 8);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief For a given point, find a nearest walkable point on the walking map
|
||||
*
|
||||
* @param startX x coordinate of the point
|
||||
* @param startY y coordinate of the point
|
||||
*
|
||||
* @return A Common::Point representing the nearest walkable point
|
||||
*
|
||||
* The algorithm was copied from the original engine for exactness.
|
||||
* TODO: Study this algorithm in more detail so it can be documented properly and
|
||||
* possibly improved / simplified.
|
||||
*/
|
||||
Common::Point WalkingMap::findNearestWalkable(int startX, int startY, Common::Rect searchRect) {
|
||||
|
||||
int signs[] = { 1, -1 };
|
||||
const uint kSignsNum = 2;
|
||||
|
||||
int radius = 0;
|
||||
int x, y;
|
||||
int dx, dy;
|
||||
int prediction;
|
||||
|
||||
// The place where, eventually, the result coordinates will be stored
|
||||
int finalX, finalY;
|
||||
|
||||
// The algorithm appears to start off with an ellipse with the minor radius equal to
|
||||
// zero and the major radius equal to the walking map delta (the number of pixels
|
||||
// one map pixel represents). It then uses a heuristic to gradually reshape it into
|
||||
// a circle (by shortening the major radius and lengthening the minor one). At each
|
||||
// such resizing step, it checks some select points on the ellipse for walkability.
|
||||
// It also does the same check for the ellipse perpendicular to it (rotated by 90 degrees).
|
||||
|
||||
while(1) {
|
||||
|
||||
// The default major radius
|
||||
radius += _deltaX;
|
||||
|
||||
// The ellipse radii (minor, major) that get resized
|
||||
x = 0;
|
||||
y = radius;
|
||||
|
||||
// Heuristic variables
|
||||
prediction = 1 - radius;
|
||||
dx = 3;
|
||||
dy = 2 * radius - 2;
|
||||
|
||||
do {
|
||||
|
||||
// The following two loops serve the purpose of checking the points on the two
|
||||
// ellipses for walkability. The signs[] array is there to obliterate the need
|
||||
// of writing out all combinations manually.
|
||||
|
||||
for (uint i = 0; i < kSignsNum; ++i) {
|
||||
finalY = startY + y * signs[i];
|
||||
|
||||
for (uint j = 0; j < kSignsNum; ++j) {
|
||||
finalX = startX + x * signs[j];
|
||||
|
||||
// If the current point is walkable, return it
|
||||
if (searchRect.contains(finalX, finalY) && isWalkable(finalX, finalY)) {
|
||||
return Common::Point(finalX, finalY);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (uint i = 0; i < kSignsNum; ++i) {
|
||||
finalY = startY + x * signs[i];
|
||||
|
||||
for (uint j = 0; j < kSignsNum; ++j) {
|
||||
finalX = startX + y * signs[j];
|
||||
|
||||
// If the current point is walkable, return it
|
||||
if (searchRect.contains(finalX, finalY) && isWalkable(finalX, finalY)) {
|
||||
return Common::Point(finalX, finalY);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If prediction is non-negative, we need to decrease the major radius of the
|
||||
// ellipse
|
||||
if (prediction >= 0) {
|
||||
prediction -= dy;
|
||||
dy -= 2 * _deltaX;
|
||||
y -= _deltaX;
|
||||
}
|
||||
|
||||
// Increase the minor radius of the ellipse and update heuristic variables
|
||||
prediction += dx;
|
||||
dx += 2 * _deltaX;
|
||||
x += _deltaX;
|
||||
|
||||
// If the current ellipse has been reshaped into a circle,
|
||||
// end this loop and enlarge the radius
|
||||
} while (x <= y);
|
||||
}
|
||||
}
|
||||
|
||||
static double real_to_double(byte real[6]) {
|
||||
|
||||
// Extract sign bit
|
||||
|
|
|
@ -89,6 +89,7 @@ public:
|
|||
}
|
||||
|
||||
bool isWalkable(int x, int y);
|
||||
Common::Point findNearestWalkable(int x, int y, Common::Rect searchRect);
|
||||
|
||||
private:
|
||||
int _realWidth, _realHeight;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue