SCI: Replaced memory ref counting code in the SongIterator code by a simple Common::Array<byte> object; also doxygenified some source comments

svn-id: r40032
This commit is contained in:
Max Horn 2009-04-20 19:28:55 +00:00
parent 5325f9b76e
commit 3eab407cd5
2 changed files with 78 additions and 218 deletions

View file

@ -26,6 +26,7 @@
/* Song iterators */ /* Song iterators */
#include "common/util.h" #include "common/util.h"
#include "sci/sfx/iterator_internal.h" #include "sci/sfx/iterator_internal.h"
#include "sci/sfx/player.h" #include "sci/sfx/player.h"
#include "sci/tools.h" #include "sci/tools.h"
@ -36,102 +37,6 @@
namespace Sci { namespace Sci {
/****************************************/
/* Refcounting garbage collected memory */
/****************************************/
#define REFCOUNT_OVERHEAD (sizeof(uint32) * 3)
#define REFCOUNT_MAGIC_LIVE_1 0xebdc1741
#define REFCOUNT_MAGIC_LIVE_2 0x17015ac9
#define REFCOUNT_MAGIC_DEAD_1 0x11dead11
#define REFCOUNT_MAGIC_DEAD_2 0x22dead22
#define REFCOUNT_CHECK(p) ((((uint32 *)(p))[-3] == REFCOUNT_MAGIC_LIVE_2) && (((uint32 *)(p))[-1] == REFCOUNT_MAGIC_LIVE_1))
#define REFCOUNT(p) (((uint32 *)p)[-2])
#undef TRACE_REFCOUNT
/* Allocates "garbage" memory
** Parameters: (size_t) length: Number of bytes to allocate
** Returns : (void *) The allocated memory
** Memory allocated in this fashion will be marked as holding one reference.
** It cannot be freed with 'free()', only by using sci_refcount_decref().
*/
static void *sci_refcount_alloc(size_t length) {
uint32 *data = (uint32 *)sci_malloc(REFCOUNT_OVERHEAD + length);
#ifdef TRACE_REFCOUNT
fprintf(stderr, "[] REF: Real-alloc at %p\n", data);
#endif
data += 3;
data[-1] = REFCOUNT_MAGIC_LIVE_1;
data[-3] = REFCOUNT_MAGIC_LIVE_2;
REFCOUNT(data) = 1;
#ifdef TRACE_REFCOUNT
fprintf(stderr, "[] REF: Alloc'd %p (ref=%d) OK=%d\n", data, REFCOUNT(data),
REFCOUNT_CHECK(data));
#endif
return data;
}
/* Adds another reference to refcounted memory
** Parameters: (void *) data: The data to add a reference to
** Returns : (void *) data
*/
static void *sci_refcount_incref(void *data) {
if (!REFCOUNT_CHECK(data)) {
BREAKPOINT();
} else
REFCOUNT(data)++;
#ifdef TRACE_REFCOUNT
fprintf(stderr, "[] REF: Inc'ing %p (now ref=%d)\n", data, REFCOUNT(data));
#endif
return data;
}
/* Decrements the reference count for refcounted memory
** Parameters: (void *) data: The data to add a reference to
** Returns : (void *) data
** If the refcount reaches zero, the memory will be deallocated
*/
static void sci_refcount_decref(void *data) {
#ifdef TRACE_REFCOUNT
fprintf(stderr, "[] REF: Dec'ing %p (prev ref=%d) OK=%d\n", data, REFCOUNT(data),
REFCOUNT_CHECK(data));
#endif
if (!REFCOUNT_CHECK(data)) {
BREAKPOINT();
} else if (--REFCOUNT(data) == 0) {
uint32 *fdata = (uint32 *)data;
fdata[-1] = REFCOUNT_MAGIC_DEAD_1;
fdata[-3] = REFCOUNT_MAGIC_DEAD_2;
#ifdef TRACE_REFCOUNT
fprintf(stderr, "[] REF: Freeing (%p)...\n", fdata - 3);
#endif
free(fdata - 3);
#ifdef TRACE_REFCOUNT
fprintf(stderr, "[] REF: Done.\n");
#endif
}
}
/* Duplicates non-refcounted memory into a refcounted block
** Parameters: (void *) data: The memory to copy from
** (size_t) len: The number of bytes to copy/allocate
** Returns : (void *) Newly allocated refcounted memory
** The number of references accounted for will be one.
*/
static void *sci_refcount_memdup(void *data, size_t len) {
void *dest = sci_refcount_alloc(len);
memcpy(dest, data, len);
return dest;
}
static const int MIDI_cmdlen[16] = {0, 0, 0, 0, 0, 0, 0, 0, static const int MIDI_cmdlen[16] = {0, 0, 0, 0, 0, 0, 0, 0,
2, 2, 2, 2, 1, 1, 2, 0 2, 2, 2, 2, 1, 1, 2, 0
@ -147,52 +52,9 @@ static void print_tabs_id(int nr, songit_id_t id) {
fprintf(stderr, "[%08lx] ", id); fprintf(stderr, "[%08lx] ", id);
} }
static byte *sci_memchr(byte *data, int c, int n) { BaseSongIterator::BaseSongIterator(byte *data, uint size, songit_id_t id)
while (n && *data != c) { : _data(data, size) {
++data;
--n;
}
if (n)
return data;
else
return NULL;
}
BaseSongIterator::BaseSongIterator(byte *data, uint size, songit_id_t id) {
ID = id; ID = id;
_data = (byte *)sci_refcount_memdup(data, size);
_size = size;
}
BaseSongIterator::BaseSongIterator(const BaseSongIterator& bsi) : SongIterator(bsi) {
memcpy(polyphony, bsi.polyphony, sizeof(polyphony));
memcpy(importance, bsi.importance, sizeof(importance));
ccc = bsi.ccc;
resetflag = bsi.resetflag;
_deviceId = bsi._deviceId;
active_channels = bsi.active_channels;
_size = bsi._size;
_data = bsi._data;
loops = bsi.loops;
recover_delay = bsi.recover_delay;
if (_data) {
#ifdef DEBUG_VERBOSE
fprintf(stderr, "** CLONE INCREF for new %p from %p at %p\n", mem, this, mem->_data);
#endif
sci_refcount_incref(_data);
}
}
BaseSongIterator::~BaseSongIterator() {
#ifdef DEBUG_VERBOSE
fprintf(stderr, "** FREEING it %p: data at %p\n", this, _data);
#endif
if (_data)
sci_refcount_decref(_data);
_data = NULL;
} }
/************************************/ /************************************/
@ -207,8 +69,8 @@ BaseSongIterator::~BaseSongIterator() {
#define SCI0_PCM_DATA_OFFSET 0x2c #define SCI0_PCM_DATA_OFFSET 0x2c
#define CHECK_FOR_END_ABSOLUTE(offset) \ #define CHECK_FOR_END_ABSOLUTE(offset) \
if (offset > self->_size) { \ if (offset > self->_data.size()) { \
warning(SIPFX "Reached end of song without terminator (%x/%x) at %d!", offset, self->_size, __LINE__); \ warning(SIPFX "Reached end of song without terminator (%x/%x) at %d!", offset, self->_data.size(), __LINE__); \
return SI_FINISHED; \ return SI_FINISHED; \
} }
@ -307,7 +169,7 @@ static int _parse_sci_midi_command(BaseSongIterator *self, byte *buf,
CHECK_FOR_END(paramsleft); CHECK_FOR_END(paramsleft);
memcpy(buf + 1, self->_data + channel->offset, paramsleft); memcpy(buf + 1, self->_data.begin() + channel->offset, paramsleft);
*result = 1 + paramsleft; *result = 1 + paramsleft;
channel->offset += paramsleft; channel->offset += paramsleft;
@ -477,8 +339,8 @@ static int _sci_midi_process_state(BaseSongIterator *self, byte *buf, int *resul
switch (channel->state) { switch (channel->state) {
case SI_STATE_PCM: { case SI_STATE_PCM: {
if (*(self->_data + channel->offset) == 0 if (self->_data[channel->offset] == 0
&& *(self->_data + channel->offset + 1) == SCI_MIDI_EOT) && self->_data[channel->offset + 1] == SCI_MIDI_EOT)
/* Fake one extra tick to trick the interpreter into not killing the song iterator right away */ /* Fake one extra tick to trick the interpreter into not killing the song iterator right away */
channel->state = SI_STATE_PCM_MAGIC_DELTA; channel->state = SI_STATE_PCM_MAGIC_DELTA;
else else
@ -510,9 +372,9 @@ static int _sci_midi_process_state(BaseSongIterator *self, byte *buf, int *resul
case SI_STATE_DELTA_TIME: { case SI_STATE_DELTA_TIME: {
int offset; int offset;
int ticks = _parse_ticks(self->_data + channel->offset, int ticks = _parse_ticks(self->_data.begin() + channel->offset,
&offset, &offset,
self->_size - channel->offset); self->_data.size() - channel->offset);
channel->offset += offset; channel->offset += offset;
channel->delay += ticks; channel->delay += ticks;
@ -589,7 +451,7 @@ static int _sci0_header_magic_p(byte *data, int offset, int size) {
static int _sci0_get_pcm_data(Sci0SongIterator *self, static int _sci0_get_pcm_data(Sci0SongIterator *self,
sfx_pcm_config_t *format, int *xoffset, uint *xsize) { sfx_pcm_config_t *format, int *xoffset, uint *xsize) {
int tries = 2; int tries = 2;
int found_it = 0; bool found_it = false;
byte *pcm_data; byte *pcm_data;
int size; int size;
uint offset = SCI0_MIDI_OFFSET; uint offset = SCI0_MIDI_OFFSET;
@ -598,23 +460,23 @@ static int _sci0_get_pcm_data(Sci0SongIterator *self,
return 1; return 1;
/* No such luck */ /* No such luck */
while ((tries--) && (offset < self->_size) && (!found_it)) { while ((tries--) && (offset < self->_data.size()) && (!found_it)) {
/* Search through the garbage manually */ // Search through the garbage manually
byte *fc = sci_memchr(self->_data + offset, // FIXME: Replace offset by an iterator
SCI0_END_OF_SONG, Common::Array<byte>::iterator iter = Common::find(self->_data.begin() + offset, self->_data.end(), SCI0_END_OF_SONG);
self->_size - offset);
if (!fc) { if (iter == self->_data.end()) {
warning(SIPFX "Playing unterminated song!"); warning(SIPFX "Playing unterminated song!");
return 1; return 1;
} }
/* add one to move it past the END_OF_SONG marker */ // add one to move it past the END_OF_SONG marker
offset = fc - self->_data + 1; iter++;
offset = iter - self->_data.begin(); // FIXME
if (_sci0_header_magic_p(self->_data, offset, self->_size)) if (_sci0_header_magic_p(self->_data.begin(), offset, self->_data.size()))
found_it = 1; found_it = true;
} }
if (!found_it) { if (!found_it) {
@ -624,7 +486,7 @@ static int _sci0_get_pcm_data(Sci0SongIterator *self,
return 1; return 1;
} }
pcm_data = self->_data + offset; pcm_data = self->_data.begin() + offset;
size = READ_LE_UINT16(pcm_data + SCI0_PCM_SIZE_OFFSET); size = READ_LE_UINT16(pcm_data + SCI0_PCM_SIZE_OFFSET);
@ -633,12 +495,12 @@ static int _sci0_get_pcm_data(Sci0SongIterator *self,
format->stereo = SFX_PCM_MONO; format->stereo = SFX_PCM_MONO;
format->rate = READ_LE_UINT16(pcm_data + SCI0_PCM_SAMPLE_RATE_OFFSET); format->rate = READ_LE_UINT16(pcm_data + SCI0_PCM_SAMPLE_RATE_OFFSET);
if (offset + SCI0_PCM_DATA_OFFSET + size != self->_size) { if (offset + SCI0_PCM_DATA_OFFSET + size != self->_data.size()) {
int d = offset + SCI0_PCM_DATA_OFFSET + size - self->_size; int d = offset + SCI0_PCM_DATA_OFFSET + size - self->_data.size();
warning(SIPFX "PCM advertizes %d bytes of data, but %d" warning(SIPFX "PCM advertizes %d bytes of data, but %d"
" bytes are trailing in the resource!", " bytes are trailing in the resource!",
size, self->_size - (offset + SCI0_PCM_DATA_OFFSET)); size, self->_data.size() - (offset + SCI0_PCM_DATA_OFFSET));
if (d > 0) if (d > 0)
size -= d; /* Fix this */ size -= d; /* Fix this */
@ -682,7 +544,7 @@ Audio::AudioStream *Sci0SongIterator::getAudioStream() {
channel.state = SI_STATE_FINISHED; /* Don't play both PCM and music */ channel.state = SI_STATE_FINISHED; /* Don't play both PCM and music */
return makeStream(_data + offset + SCI0_PCM_DATA_OFFSET, size, conf); return makeStream(_data.begin() + offset + SCI0_PCM_DATA_OFFSET, size, conf);
} }
SongIterator *Sci0SongIterator::handleMessage(Message msg) { SongIterator *Sci0SongIterator::handleMessage(Message msg) {
@ -692,7 +554,7 @@ SongIterator *Sci0SongIterator::handleMessage(Message msg) {
case _SIMSG_BASEMSG_PRINT: case _SIMSG_BASEMSG_PRINT:
print_tabs_id(msg._arg.i, ID); print_tabs_id(msg._arg.i, ID);
fprintf(stderr, "SCI0: dev=%d, active-chan=%d, size=%d, loops=%d\n", fprintf(stderr, "SCI0: dev=%d, active-chan=%d, size=%d, loops=%d\n",
_deviceId, active_channels, _size, loops); _deviceId, active_channels, _data.size(), loops);
break; break;
case _SIMSG_BASEMSG_SET_LOOPS: case _SIMSG_BASEMSG_SET_LOOPS:
@ -787,7 +649,7 @@ void Sci0SongIterator::init() {
ccc = 0; /* Reset cumulative cue counter */ ccc = 0; /* Reset cumulative cue counter */
active_channels = 1; active_channels = 1;
_base_init_channel(&channel, 0, SCI0_MIDI_OFFSET, _size); _base_init_channel(&channel, 0, SCI0_MIDI_OFFSET, _data.size());
channel.resetSynthChannels(); channel.resetSynthChannels();
if (_data[0] == 2) /* Do we have an embedded PCM? */ if (_data[0] == 2) /* Do we have an embedded PCM? */
@ -833,20 +695,20 @@ static int _sci1_sample_init(Sci1SongIterator *self, int offset) {
sciprintf("[iterator-1] In sample at offset 0x04x: Byte #1 is %02x instead of zero\n", sciprintf("[iterator-1] In sample at offset 0x04x: Byte #1 is %02x instead of zero\n",
self->_data[offset + 1]); self->_data[offset + 1]);
rate = (int16)READ_LE_UINT16(self->_data + offset + 2); rate = (int16)READ_LE_UINT16(self->_data.begin() + offset + 2);
length = READ_LE_UINT16(self->_data + offset + 4); length = READ_LE_UINT16(self->_data.begin() + offset + 4);
begin = (int16)READ_LE_UINT16(self->_data + offset + 6); begin = (int16)READ_LE_UINT16(self->_data.begin() + offset + 6);
end = (int16)READ_LE_UINT16(self->_data + offset + 8); end = (int16)READ_LE_UINT16(self->_data.begin() + offset + 8);
CHECK_FOR_END_ABSOLUTE((uint)(offset + 10 + length)); CHECK_FOR_END_ABSOLUTE((uint)(offset + 10 + length));
sample.delta = begin; sample.delta = begin;
sample.size = length; sample.size = length;
sample._data = self->_data + offset + 10; sample._data = self->_data.begin() + offset + 10;
#ifdef DEBUG_VERBOSE #ifdef DEBUG_VERBOSE
fprintf(stderr, "[SAMPLE] %x/%x/%x/%x l=%x\n", fprintf(stderr, "[SAMPLE] %x/%x/%x/%x l=%x\n",
offset + 10, begin, end, self->_size, length); offset + 10, begin, end, self->_data.size(), length);
#endif #endif
sample.format.format = SFX_PCM_FORMAT_U8; sample.format.format = SFX_PCM_FORMAT_U8;
@ -904,8 +766,8 @@ static int _sci1_song_init(Sci1SongIterator *self) {
CHECK_FOR_END_ABSOLUTE(offset + 4); CHECK_FOR_END_ABSOLUTE(offset + 4);
track_offset = READ_LE_UINT16(self->_data + offset); track_offset = READ_LE_UINT16(self->_data.begin() + offset);
end = READ_LE_UINT16(self->_data + offset + 2); end = READ_LE_UINT16(self->_data.begin() + offset + 2);
CHECK_FOR_END_ABSOLUTE(track_offset - 1); CHECK_FOR_END_ABSOLUTE(track_offset - 1);

View file

@ -29,21 +29,11 @@
#include "sci/sfx/iterator.h" #include "sci/sfx/iterator.h"
#include "sci/sfx/sci_midi.h" #include "sci/sfx/sci_midi.h"
#include "common/array.h"
#include "common/list.h" #include "common/list.h"
namespace Sci { namespace Sci {
/* States */
#define SI_STATE_UNINITIALISED -1
#define SI_STATE_DELTA_TIME 0 /* Now at a delta time */
#define SI_STATE_COMMAND 1 /* Now at a MIDI operation */
#define SI_STATE_PENDING 2 /* Pending for loop */
#define SI_STATE_FINISHED 3 /* End of song */
#define SI_STATE_PCM 4 /* Should report a PCM next (-> DELTA_TIME) */
#define SI_STATE_PCM_MAGIC_DELTA 5 /* Should report a ``magic'' one tick delta time next (goes on to FINISHED) */
/* Iterator types */ /* Iterator types */
#define SCI_SONG_ITERATOR_TYPE_SCI0 0 #define SCI_SONG_ITERATOR_TYPE_SCI0 0
@ -52,29 +42,42 @@ namespace Sci {
#define SIPFX __FILE__" : " #define SIPFX __FILE__" : "
enum {
SI_STATE_UNINITIALISED = -1,
SI_STATE_DELTA_TIME = 0, //!< Now at a delta time
SI_STATE_COMMAND = 1, //!< Now at a MIDI operation
SI_STATE_PENDING = 2, //!< Pending for loop
SI_STATE_FINISHED = 3, //!< End of song
SI_STATE_PCM = 4, //!< Should report a PCM next (-> DELTA_TIME)
SI_STATE_PCM_MAGIC_DELTA = 5 //!< Should report a ``magic'' one tick delta time next (goes on to FINISHED)
};
struct SongIteratorChannel { struct SongIteratorChannel {
int state; /* SI_STATE_* */
int offset; /* Offset into the data chunk */ int state; //!< State of this song iterator channel
int end; /* Last allowed byte in track */ int offset; //!< Offset into the data chunk */
int id; /* Some channel ID */ int end; //!< Last allowed byte in track */
int loop_offset; int id; //!< Some channel ID */
int delay; /* Number of ticks before the
** specified channel is next /**
** used, or * Number of ticks before the specified channel is next used, or
** CHANNEL_DELAY_MISSING to * CHANNEL_DELAY_MISSING to indicate that the delay has not yet
** indicate that the delay has * been read.
** not yet been read */ */
int delay;
/* Two additional offsets for recovering: */ /* Two additional offsets for recovering: */
int loop_offset;
int initial_offset; int initial_offset;
int playmask; /* Active playmask (MIDI channels to play in here) */
int notes_played; /* #of notes played since the last loop start */
int loop_timepos; /* Total delay for this channel's loop marker */
int total_timepos; /* Number of ticks since the beginning, ignoring loops */
int timepos_increment; /* Number of ticks until the next command (to add) */
int saw_notes; /* Bitmask of channels we have currently played notes on */ int playmask; //!< Active playmask (MIDI channels to play in here) */
byte last_cmd; /* Last operation executed, for running status */ int notes_played; //!< #of notes played since the last loop start */
int loop_timepos; //!< Total delay for this channel's loop marker */
int total_timepos; //!< Number of ticks since the beginning, ignoring loops */
int timepos_increment; //!< Number of ticks until the next command (to add) */
int saw_notes; //!< Bitmask of channels we have currently played notes on */
byte last_cmd; //!< Last operation executed, for running status */
public: public:
void resetSynthChannels(); void resetSynthChannels();
@ -82,27 +85,21 @@ public:
class BaseSongIterator : public SongIterator { class BaseSongIterator : public SongIterator {
public: public:
int polyphony[MIDI_CHANNELS]; /* # of simultaneous notes on each */ int polyphony[MIDI_CHANNELS]; //!< # of simultaneous notes on each
int importance[MIDI_CHANNELS]; /* priority rating for each channel, 0 means unrated. */ int importance[MIDI_CHANNELS]; //!< priority rating for each channel, 0 means unrated.
int ccc; /* Cumulative cue counter, for those who need it */ int ccc; //!< Cumulative cue counter, for those who need it
byte resetflag; /* for 0x4C -- on DoSound StopSound, do we return to start? */ byte resetflag; //!< for 0x4C -- on DoSound StopSound, do we return to start?
int _deviceId; /* ID of the device we generating events for */ int _deviceId; //!< ID of the device we generating events for
int active_channels; /* Number of active channels */ int active_channels; //!< Number of active channels
uint _size; /* Song size */ Common::Array<byte> _data; //!< Song data
byte *_data;
int loops; /* Number of loops remaining */ int loops; //!< Number of loops remaining
int recover_delay; int recover_delay;
public: public:
BaseSongIterator(byte *data, uint size, songit_id_t id); BaseSongIterator(byte *data, uint size, songit_id_t id);
// Copy constructor taking care of memory handling
BaseSongIterator(const BaseSongIterator&);
~BaseSongIterator();
}; };
/********************************/ /********************************/
@ -131,7 +128,8 @@ public:
struct Sci1Sample { struct Sci1Sample {
/* Time left-- initially, this is 'Sample point 1'. /**
* Time left-- initially, this is 'Sample point 1'.
* After initialisation, it is 'sample point 1 minus the sample * After initialisation, it is 'sample point 1 minus the sample
* point of the previous sample' * point of the previous sample'
*/ */