/* Residual - A 3D game interpreter * * Residual is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA * */ #define FORBIDDEN_SYMBOL_EXCEPTION_printf #include "common/endian.h" #include "common/zlib.h" #include "common/memstream.h" #include "engines/grim/grim.h" #include "engines/grim/bitmap.h" #include "engines/grim/gfx_base.h" #include "engines/grim/savegame.h" #include "engines/grim/colormap.h" namespace Grim { static void decompress_codec3(const char *compressed, char *result); Common::HashMap *BitmapData::_bitmaps = NULL; // Helper function for makeBitmapFromTile char *getLine(int lineNum, char *data, unsigned int width, int bpp) { return data + (lineNum *(width * bpp)); } char *makeBitmapFromTile(char **bits, int width, int height, int bpp) { bpp = bpp / 8; char *fullImage = new char[width * height * bpp]; const int tWidth = 256 * bpp; // All tiles so far are 256 wide const int tWidth2 = 256; char *target = fullImage; int line; for (int i = 0; i < 256; i++) { /* This can be modified to actually use the last 32 lines. * We simply put the lower half on line 223 and down to line 32, * then skip the last 32. * While the upper half is put on line 479 and down to line 224. */ if (i < 224) { // Skip blank space line = 224 - i; target = getLine(479 - i, fullImage, width, bpp); memcpy(target, getLine(line, bits[3], tWidth2, bpp), tWidth); target += tWidth; memcpy(target, getLine(line, bits[4], tWidth2, bpp), tWidth); target += tWidth; memcpy(target, getLine(line, bits[2], tWidth2, bpp) + 128 * bpp, 128 * bpp); } line = 255 - i; // Top half of course target = getLine(line, fullImage, width, bpp); memcpy(target, getLine(line, bits[0], tWidth2, bpp), tWidth); target += tWidth; memcpy(target, getLine(line, bits[1], tWidth2, bpp), tWidth); target += tWidth; memcpy(target, getLine(line, bits[2], tWidth2, bpp), 128 * bpp); } return fullImage; } BitmapData *BitmapData::getBitmapData(const char *fname, const char *data, int len) { Common::String str(fname); if (_bitmaps && _bitmaps->contains(str)) { BitmapData *b = (*_bitmaps)[str]; ++b->_refCount; return b; } BitmapData *b = new BitmapData(fname, data, len); if (!_bitmaps) { _bitmaps = new Common::HashMap(); } (*_bitmaps)[str] = b; return b; } BitmapData::BitmapData(const char *fname, const char *data, int len) { _fname = fname; _refCount = 1; if (len > 4 && memcmp(data, "\x1f\x8b\x08\0", 4) == 0) { loadTile(fname, data, len); return; } else if (len < 8 || memcmp(data, "BM F\0\0\0", 8) != 0) { if (gDebugLevel == DEBUG_BITMAPS || gDebugLevel == DEBUG_ERROR || gDebugLevel == DEBUG_ALL) error("Invalid magic loading bitmap"); } int codec = READ_LE_UINT32(data + 8); // _paletteIncluded = READ_LE_UINT32(data + 12); _numImages = READ_LE_UINT32(data + 16); _x = READ_LE_UINT32(data + 20); _y = READ_LE_UINT32(data + 24); // _transparentColor = READ_LE_UINT32(data + 28); _format = READ_LE_UINT32(data + 32); _bpp = READ_LE_UINT32(data + 36); // _blueBits = READ_LE_UINT32(data + 40); // _greenBits = READ_LE_UINT32(data + 44); // _redBits = READ_LE_UINT32(data + 48); // _blueShift = READ_LE_UINT32(data + 52); // _greenShift = READ_LE_UINT32(data + 56); // _redShift = READ_LE_UINT32(data + 60); _width = READ_LE_UINT32(data + 128); _height = READ_LE_UINT32(data + 132); _colorFormat = BM_RGB565; _data = new char *[_numImages]; int pos = 0x88; for (int i = 0; i < _numImages; i++) { _data[i] = new char[_bpp / 8 * _width * _height]; if (codec == 0) { memcpy(_data[i], data + pos, _bpp / 8 * _width * _height); pos += _bpp / 8 * _width * _height + 8; } else if (codec == 3) { int compressed_len = READ_LE_UINT32(data + pos); decompress_codec3(data + pos + 4, _data[i]); pos += compressed_len + 12; } #ifdef SCUMM_BIG_ENDIAN if (_format == 1) for (int j = 0; j < _width * _height; ++j) { ((uint16 *)_data[i])[j] = SWAP_BYTES_16(((uint16 *)_data[i])[j]); } #endif } g_driver->createBitmap(this); } BitmapData::BitmapData(const char *data, int w, int h, int bpp, const char *fname) { _fname = fname; _refCount = 1; if (gDebugLevel == DEBUG_BITMAPS || gDebugLevel == DEBUG_NORMAL || gDebugLevel == DEBUG_ALL) printf("New bitmap loaded: %s\n", fname); _numImages = 1; _x = 0; _y = 0; _width = w; _height = h; _format = 1; _numTex = 0; _texIds = NULL; _bpp = bpp; _hasTransparency = false; _colorFormat = BM_RGB565; _data = new char *[_numImages]; _data[0] = new char[_bpp / 8 * _width * _height]; memcpy(_data[0], data, _bpp / 8 * _width * _height); g_driver->createBitmap(this); } BitmapData::BitmapData() : _data(NULL), _refCount(1) { } BitmapData::~BitmapData() { if (_data) { for (int i = 0; i < _numImages; i++) if (_data[i]) delete[] _data[i]; delete[] _data; _data = NULL; g_driver->destroyBitmap(this); } if (_bitmaps) { if (_bitmaps->contains(_fname)) { _bitmaps->erase(_fname); } if (_bitmaps->empty()) { delete _bitmaps; _bitmaps = NULL; } } } bool BitmapData::loadTile(const char *filename, const char *data, int len) { _x = 0; _y = 0; _format = 1; //warning("Loading TILE: %s",filename); Common::MemoryReadStream stream((const byte *)data, len); Common::SeekableReadStream *o = Common::wrapCompressedReadStream(&stream); uint32 id, bmoffset; id = o->readUint32LE(); // Should check that we actually HAVE a TIL bmoffset = o->readUint32LE(); o->seek(bmoffset + 16); int numSubImages = o->readUint32LE(); if (numSubImages < 5) error("Can not handle a tile with less than 5 sub images"); _data = new char *[numSubImages]; o->seek(16, SEEK_CUR); _bpp = o->readUint32LE(); o->seek(bmoffset + 128); _width = o->readUint32LE(); _height = o->readUint32LE(); o->seek(-8, SEEK_CUR); int size = _bpp / 8 * _width * _height; for (int i = 0; i < numSubImages; ++i) { _data[i] = new char[size]; o->seek(8, SEEK_CUR); o->read(_data[i], size); } char *bMap = makeBitmapFromTile(_data, 640, 480, _bpp); for (int i = 0; i < numSubImages; ++i) { delete[] _data[i]; } _width = 640; _height = 480; _data[0] = bMap; _numImages = 1; if (_bpp == 16) { _colorFormat = BM_RGB1555; //convertToColorFormat(0, BM_RGBA); } else { _colorFormat = BM_RGBA; } g_driver->createBitmap(this); return true; } char *BitmapData::getImageData(int num) const { return _data[num]; } // Bitmap Bitmap::Bitmap(const char *fname, const char *data, int len) : Object() { _data = BitmapData::getBitmapData(fname, data, len); _x = _data->_x; _y = _data->_y; _currImage = 1; } Bitmap::Bitmap(const char *data, int w, int h, int bpp, const char *fname) : Object() { _data = new BitmapData(data, w, h, bpp, fname); _x = _data->_x; _y = _data->_y; _currImage = 1; } Bitmap::Bitmap() : Object() { _data = new BitmapData(); } void Bitmap::draw() const { if (_currImage == 0) return; g_driver->drawBitmap(this); } Bitmap::~Bitmap() { --_data->_refCount; if (_data->_refCount < 1) { delete _data; } g_grim->killBitmap(this); } void BitmapData::convertToColorFormat(int num, int format) { // Supports 1555->RGBA, RGBA->565 unsigned char red = 0, green = 0, blue = 0, alpha = 0; int size = _width * _height * (_bpp / 8); if (_colorFormat == BM_RGB1555) { uint16 *bitmapData = reinterpret_cast(_data[num]); if (format == BM_RGBA && _bpp == 16) { // Convert data to 32-bit RGBA format char *newData = new char[_width * _height * 4]; char *to = newData; for (int i = 0; i< _height * _width; i++, bitmapData++, to += 4) { uint pixel = *bitmapData; // Alpha, then 555 (BGR). blue = (pixel >> 10) & 0x1f; to[2] = blue << 3 | blue >> 2; green = (pixel >> 5) & 0x1f; to[1] = green << 3 | green >> 2; red = (pixel & 0x1f); to[0] = red << 3 | red >> 2; if (pixel >> 15 & 1) alpha = 255; else alpha = 0; to[3] = alpha; } delete _data[num]; _data[num] = newData; _colorFormat = BM_RGBA; _bpp = 32; } else if (format == BM_RGB565){ // 1555 -> 565 (Incomplete) convertToColorFormat(num, BM_RGBA); convertToColorFormat(num, BM_RGB565); warning("Conversion 1555->565 done with 1555->RGBA->565"); return; warning("Conversion 1555->565 is not properly implemented"); // This doesn't work properly, so falling back to double-conversion via RGBA for now. uint16 *to = reinterpret_cast(_data[num]); for (int i = 1; i < _height * _width; i++, bitmapData++, to++) { uint pixel = *bitmapData; // Alpha, then 555. if (to[0] & 128) { // Chroma key to[0] = 0xf8; to[1] = 0x1f; } else { blue = (pixel >> 10) & 0x1f; //red = red << 3 | red >> 2; green = (pixel >> 5) & 0x1f; green = green << 1 | green >> 1; red = (pixel) & 0x1f; to[0] = (red << 3) | green >> 3; to[1] = (green << 5) | blue; } } _colorFormat = BM_RGB565; } } else if (_colorFormat == BM_RGBA) { if (format == BM_RGB565) { // RGBA->565 char* tempStore = _data[num]; char* newStore = new char[size / 2]; uint16 *to = reinterpret_cast(newStore); for(int j = 0; j < size;j += 4, to++){ red = (tempStore[j] >> 3) & 0x1f; green = (tempStore[j + 1] >> 2) & 0x3f; blue = (tempStore[j + 2] >> 3) &0x1f; *to = (red << 11) | (green << 5) | blue; } delete[] tempStore; _data[num] = newStore; _colorFormat = BM_RGB565; } } else if (_colorFormat == BM_RGB565) { if (format == BM_RGBA && _bpp == 16) { byte *tempData = new byte[4 * _width * _height]; // Convert data to 32-bit RGBA format byte *tempDataPtr = tempData; uint16 *bitmapData = reinterpret_cast(_data[num]); for (int i = 0; i < _width * _height; i++, tempDataPtr += 4, bitmapData++) { uint16 pixel = *bitmapData; int r = pixel >> 11; tempDataPtr[0] = (r << 3) | (r >> 2); int g = (pixel >> 5) & 0x3f; tempDataPtr[1] = (g << 2) | (g >> 4); int b = pixel & 0x1f; tempDataPtr[2] = (b << 3) | (b >> 2); if (pixel == 0xf81f) { // transparent tempDataPtr[3] = 0; _hasTransparency = true; } else { tempDataPtr[3] = 255; } } delete[] _data[num]; _data[num] = (char *)tempData; _colorFormat = BM_RGBA; _bpp = 32; } } else { error("Conversion between format: %d and format %d not implemented",_colorFormat, format); } } #define GET_BIT do { bit = bitstr_value & 1; \ bitstr_len--; \ bitstr_value >>= 1; \ if (bitstr_len == 0) { \ bitstr_value = READ_LE_UINT16(compressed); \ bitstr_len = 16; \ compressed += 2; \ } \ } while (0) static void decompress_codec3(const char *compressed, char *result) { int bitstr_value = READ_LE_UINT16(compressed); int bitstr_len = 16; compressed += 2; bool bit; for (;;) { GET_BIT; if (bit == 1) *result++ = *compressed++; else { GET_BIT; int copy_len, copy_offset; if (bit == 0) { GET_BIT; copy_len = 2 * bit; GET_BIT; copy_len += bit + 3; copy_offset = *(uint8 *)(compressed++) - 0x100; } else { copy_offset = (*(uint8 *)(compressed) | (*(uint8 *)(compressed + 1) & 0xf0) << 4) - 0x1000; copy_len = (*(uint8 *)(compressed + 1) & 0xf) + 3; compressed += 2; if (copy_len == 3) { copy_len = *(uint8 *)(compressed++) + 1; if (copy_len == 1) return; } } while (copy_len > 0) { *result = result[copy_offset]; result++; copy_len--; } } } } } // end of namespace Grim