/* ResidualVM - A 3D game interpreter * * ResidualVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA * */ #define FORBIDDEN_SYMBOL_EXCEPTION_printf #include "common/endian.h" #include "graphics/colormasks.h" #include "graphics/pixelbuffer.h" #include "engines/grim/debug.h" #include "engines/grim/grim.h" #include "engines/grim/bitmap.h" #include "engines/grim/resource.h" #include "engines/grim/gfx_base.h" namespace Grim { static bool decompress_codec3(const char *compressed, char *result, int maxBytes); Common::HashMap *BitmapData::_bitmaps = NULL; // Helper function for makeBitmapFromTile char *getLine(int lineNum, char *data, unsigned int width, int bpp) { return data + (lineNum *(width * bpp)); } #ifdef ENABLE_MONKEY4 char *makeBitmapFromTile(char **bits, int width, int height, int bpp) { bpp = bpp / 8; char *fullImage = new char[width * height * bpp]; const int tWidth = 256 * bpp; // All tiles so far are 256 wide const int tWidth2 = 256; char *target = fullImage; int line; for (int i = 0; i < 256; i++) { /* This can be modified to actually use the last 32 lines. * We simply put the lower half on line 223 and down to line 32, * then skip the last 32. * While the upper half is put on line 479 and down to line 224. */ if (i < 224) { // Skip blank space line = 224 - i; target = getLine(479 - i, fullImage, width, bpp); memcpy(target, getLine(line, bits[3], tWidth2, bpp), tWidth); target += tWidth; memcpy(target, getLine(line, bits[4], tWidth2, bpp), tWidth); target += tWidth; memcpy(target, getLine(line, bits[2], tWidth2, bpp) + 128 * bpp, 128 * bpp); } line = 255 - i; // Top half of course target = getLine(line, fullImage, width, bpp); memcpy(target, getLine(line, bits[0], tWidth2, bpp), tWidth); target += tWidth; memcpy(target, getLine(line, bits[1], tWidth2, bpp), tWidth); target += tWidth; memcpy(target, getLine(line, bits[2], tWidth2, bpp), 128 * bpp); } return fullImage; } #endif BitmapData *BitmapData::getBitmapData(const Common::String &fname, Common::SeekableReadStream *data) { Common::String str(fname); if (_bitmaps && _bitmaps->contains(str)) { BitmapData *b = (*_bitmaps)[str]; ++b->_refCount; return b; } BitmapData *b = new BitmapData(fname, data); if (!_bitmaps) { _bitmaps = new Common::HashMap(); } (*_bitmaps)[str] = b; return b; } BitmapData::BitmapData(const Common::String &fname, Common::SeekableReadStream *data) { _fname = fname; _refCount = 1; _data = 0; uint32 tag = data->readUint32BE(); switch(tag) { case(MKTAG('B','M',' ',' ')): //Grim bitmap loadGrimBm(fname, data); break; case(MKTAG('T','I','L','0')): // MI4 bitmap loadTile(fname, data); break; default: if (!loadTGA(fname, data)) // Try to load as TGA. Debug::error(Debug::Bitmaps, "Invalid magic loading bitmap"); break; } } bool BitmapData::loadGrimBm(const Common::String &fname, Common::SeekableReadStream *data) { uint32 tag2 = data->readUint32BE(); if(tag2 != (MKTAG('F','\0','\0','\0'))) return false; int codec = data->readUint32LE(); data->readUint32LE(); //_paletteIncluded _numImages = data->readUint32LE(); _x = data->readUint32LE(); _y = data->readUint32LE(); data->readUint32LE(); //_transparentColor _format = data->readUint32LE(); _bpp = data->readUint32LE(); uint32 redBits = data->readUint32LE(); uint32 greenBits = data->readUint32LE(); uint32 blueBits = data->readUint32LE(); uint32 redShift = data->readUint32LE(); uint32 greenShift = data->readUint32LE(); uint32 blueShift = data->readUint32LE(); Graphics::PixelFormat pixelFormat = Graphics::PixelFormat(_bpp / 8, redBits, greenBits, blueBits, 0, redShift, greenShift, blueShift, 0); data->seek(128, SEEK_SET); _width = data->readUint32LE(); _height = data->readUint32LE(); _colorFormat = BM_RGB565; _hasTransparency = false; _data = new Graphics::PixelBuffer[_numImages]; data->seek(0x80, SEEK_SET); for (int i = 0; i < _numImages; i++) { data->seek(8, SEEK_CUR); _data[i].create(pixelFormat, _width * _height, DisposeAfterUse::YES); if (codec == 0) { uint32 dsize = _bpp / 8 * _width * _height; data->read(_data[i].getRawBuffer(), dsize); } else if (codec == 3) { int compressed_len = data->readUint32LE(); char *compressed = new char[compressed_len]; data->read(compressed, compressed_len); bool success = decompress_codec3(compressed, (char *)_data[i].getRawBuffer(), _bpp / 8 * _width * _height); delete[] compressed; if (!success) warning(".. when loading image %s.\n", fname.c_str()); } else Debug::error(Debug::Bitmaps, "Unknown image codec in BitmapData ctor!"); #ifdef SCUMM_BIG_ENDIAN if (_format == 1) for (int j = 0; j < _width * _height; ++j) { ((uint16 *)_data[i])[j] = SWAP_BYTES_16(((uint16 *)_data[i])[j]); } #endif } // Initially, no GPU-side textures created. the createBitmap // function will allocate some if necessary (and successful) _numTex = 0; _texIds = NULL; g_driver->createBitmap(this); return true; } BitmapData::BitmapData(const Graphics::PixelBuffer &buf, int w, int h, const char *fname) { _fname = fname; _refCount = 1; Debug::debug(Debug::Bitmaps, "New bitmap loaded: %s\n", fname); _numImages = 1; _x = 0; _y = 0; _width = w; _height = h; _format = 1; _numTex = 0; _texIds = NULL; _bpp = buf.getFormat().bytesPerPixel * 8; _hasTransparency = false; _colorFormat = BM_RGB565; _data = new Graphics::PixelBuffer[_numImages]; _data[0].create(buf.getFormat(), w * h, DisposeAfterUse::YES); _data[0].copyBuffer(0, w * h, buf); g_driver->createBitmap(this); } BitmapData::BitmapData() : _numImages(0), _width(0), _height(0), _x(0), _y(0), _format(0), _numTex(0), _bpp(0), _colorFormat(0), _texIds(0), _hasTransparency(false), _data(NULL), _refCount(1) { } BitmapData::~BitmapData() { if (_data) { delete[] _data; _data = NULL; g_driver->destroyBitmap(this); } if (_bitmaps) { if (_bitmaps->contains(_fname)) { _bitmaps->erase(_fname); } if (_bitmaps->empty()) { delete _bitmaps; _bitmaps = NULL; } } } bool BitmapData::loadTGA(const Common::String &fname, Common::SeekableReadStream *data) { data->seek(0, SEEK_SET); if (data->readByte() != 0) // Verify that description-field is empty return false; data->seek(1, SEEK_CUR); int format = data->readByte(); if (format != 2) return false; data->seek(9, SEEK_CUR); _width = data->readUint16LE(); _height = data->readUint16LE();; _format = 1; _x = 0; _y = 0; int bpp = data->readByte(); Graphics::PixelFormat pixelFormat; if (bpp == 32) { _colorFormat = BM_RGBA; pixelFormat = Graphics::PixelFormat(4, 8, 8, 8, 8, 0, 8, 16, 24); _bpp = 4; } else { return false; } uint8 desc = data->readByte(); uint8 flipped = !(desc & 32); if (!(bpp == 24 || bpp == 32)) // Assure we have 24/32 bpp return false; _data = new Graphics::PixelBuffer[1]; _data[0].create(pixelFormat, _width * _height, DisposeAfterUse::YES); char *writePtr = (char *)_data[0].getRawBuffer(_width * (_height - 1)); if (flipped) { for (int i = 0; i < _height; i++) { data->read(writePtr, _width * (bpp / 8)); writePtr -= (_width * bpp / 8); } } else { data->read(_data[0].getRawBuffer(), _width * _height * (bpp / 8)); } uint8 x; for (int i = 0; i < _width * _height * (bpp / 8); i+=4) { byte *b = _data[0].getRawBuffer(); x = b[i]; b[i] = b[i + 2]; b[i + 2] = x; } _numImages = 1; g_driver->createBitmap(this); return true; } bool BitmapData::loadTile(const Common::String &fname, Common::SeekableReadStream *o) { #ifdef ENABLE_MONKEY4 _x = 0; _y = 0; _format = 1; o->seek(0, SEEK_SET); //warning("Loading TILE: %s",fname.c_str()); uint32 id, bmoffset; id = o->readUint32LE(); // Should check that we actually HAVE a TIL bmoffset = o->readUint32LE(); o->seek(bmoffset + 16); int numSubImages = o->readUint32LE(); if (numSubImages < 5) error("Can not handle a tile with less than 5 sub images"); char **data = new char *[numSubImages]; o->seek(16, SEEK_CUR); _bpp = o->readUint32LE(); o->seek(bmoffset + 128); _width = o->readUint32LE(); _height = o->readUint32LE(); o->seek(-8, SEEK_CUR); int size = _bpp / 8 * _width * _height; for (int i = 0; i < numSubImages; ++i) { data[i] = new char[size]; o->seek(8, SEEK_CUR); o->read(data[i], size); } char *bMap = makeBitmapFromTile(data, 640, 480, _bpp); for (int i = 0; i < numSubImages; ++i) { delete[] data[i]; } Graphics::PixelFormat pixelFormat; if (_bpp == 16) { _colorFormat = BM_RGB1555; pixelFormat = Graphics::createPixelFormat<1555>(); //convertToColorFormat(0, BM_RGBA); } else { pixelFormat = Graphics::PixelFormat(4, 8,8,8,8, 0, 8, 16, 24); _colorFormat = BM_RGBA; } _width = 640; _height = 480; _numImages = 1; _data = new Graphics::PixelBuffer[_numImages]; _data[0].create(pixelFormat, _width * _height, DisposeAfterUse::YES); _data[0].set(pixelFormat, (byte *)bMap); g_driver->createBitmap(this); #endif // ENABLE_MONKEY4 return true; } const Graphics::PixelBuffer &BitmapData::getImageData(int num) const { assert(num >= 0); assert(num < _numImages); return _data[num]; } // Bitmap Bitmap::Bitmap(const Common::String &fname, Common::SeekableReadStream *data) : PoolObject() { _data = BitmapData::getBitmapData(fname, data); _x = _data->_x; _y = _data->_y; _currImage = 1; } Bitmap::Bitmap(const Graphics::PixelBuffer &buf, int w, int h, const char *fname) : PoolObject() { _data = new BitmapData(buf, w, h, fname); _x = _data->_x; _y = _data->_y; _currImage = 1; } Bitmap::Bitmap() : PoolObject() { _data = new BitmapData(); } void Bitmap::saveState(SaveGame *state) const { state->writeString(getFilename()); state->writeLESint32(getActiveImage()); state->writeLESint32(getX()); state->writeLESint32(getY()); } void Bitmap::restoreState(SaveGame *state) { freeData(); Common::String fname = state->readString(); Common::SeekableReadStream *data = g_resourceloader->openNewStreamFile(fname.c_str(), true); _data = BitmapData::getBitmapData(fname, data); _currImage = state->readLESint32(); _x = state->readLESint32(); _y = state->readLESint32(); } void Bitmap::draw() const { if (_currImage == 0) return; g_driver->drawBitmap(this); } void Bitmap::setActiveImage(int n) { assert(n >= 0); if ((n - 1) >= _data->_numImages) { warning("Bitmap::setNumber: no anim image: %d. (%s)", n, _data->_fname.c_str()); } else { _currImage = n; } } void Bitmap::freeData() { --_data->_refCount; if (_data->_refCount < 1) { delete _data; _data = 0; } } Bitmap::~Bitmap() { freeData(); } const Graphics::PixelFormat &Bitmap::getPixelFormat(int num) const { return getData(num).getFormat(); } void BitmapData::convertToColorFormat(int num, const Graphics::PixelFormat &format) { if (_data[num].getFormat() == format) { return; } Graphics::PixelBuffer dst(format, _width * _height, DisposeAfterUse::NO); for (int i = 0; i < _width * _height; ++i) { if (_data[num].getValueAt(i) == 0xf81f) { //transparency dst.setPixelAt(i, 0xf81f); } else { dst.setPixelAt(i, _data[num]); } } _data[num].free(); _data[num] = dst; } void BitmapData::convertToColorFormat(const Graphics::PixelFormat &format) { for (int i = 0; i < _numImages; ++i) { convertToColorFormat(i, format); } } #define GET_BIT do { bit = bitstr_value & 1; \ bitstr_len--; \ bitstr_value >>= 1; \ if (bitstr_len == 0) { \ bitstr_value = READ_LE_UINT16(compressed); \ bitstr_len = 16; \ compressed += 2; \ } \ } while (0) static bool decompress_codec3(const char *compressed, char *result, int maxBytes) { int bitstr_value = READ_LE_UINT16(compressed); int bitstr_len = 16; compressed += 2; bool bit; int byteIndex = 0; for (;;) { GET_BIT; if (bit == 1) { if (byteIndex >= maxBytes) { warning("Buffer overflow when decoding image: decompress_codec3 walked past the input buffer!"); return false; } else *result++ = *compressed++; ++byteIndex; } else { GET_BIT; int copy_len, copy_offset; if (bit == 0) { GET_BIT; copy_len = 2 * bit; GET_BIT; copy_len += bit + 3; copy_offset = *(uint8 *)(compressed++) - 0x100; } else { copy_offset = (*(uint8 *)(compressed) | (*(uint8 *)(compressed + 1) & 0xf0) << 4) - 0x1000; copy_len = (*(uint8 *)(compressed + 1) & 0xf) + 3; compressed += 2; if (copy_len == 3) { copy_len = *(uint8 *)(compressed++) + 1; if (copy_len == 1) return true; } } while (copy_len > 0) { if (byteIndex >= maxBytes) { warning("Buffer overflow when decoding image: decompress_codec3 walked past the input buffer!"); return false; } else { assert(byteIndex + copy_offset >= 0); assert(byteIndex + copy_offset < maxBytes); *result = result[copy_offset]; result++; } ++byteIndex; copy_len--; } } } return true; } } // end of namespace Grim