scummvm/graphics/decoders/iff.cpp
peres 92c1ff31d6 GRAPHICS: do not clear the internal state of IFFDecoder on loadStream().
This decoder needs to keep track of client parameters that control
how the pixels are going to be packaged, so the responsibility for
clearing the state has been moved on the client (using the destroy()
method on ImageDecoder).

As no client uses the IFFDecoder for more than one image at a time,
this change does not require updates to the engines. The only effect
is on Parallaction (BRA-Amiga), which can now control the way pixels
are packaged in mask and path bitmaps.
2013-10-26 22:24:16 +09:00

242 lines
6.3 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "common/iff_container.h"
#include "common/stream.h"
#include "common/util.h"
#include "graphics/decoders/iff.h"
namespace Graphics {
IFFDecoder::IFFDecoder() {
_surface = 0;
_palette = 0;
destroy();
}
IFFDecoder::~IFFDecoder() {
destroy();
}
void IFFDecoder::destroy() {
if (_surface) {
_surface->free();
delete _surface;
_surface = 0;
}
if (_palette) {
delete[] _palette;
_palette = 0;
}
memset(&_header, 0, sizeof(Header));
_paletteRanges.clear();
_type = TYPE_UNKNOWN;
_paletteColorCount = 0;
_numRelevantPlanes = 8;
_pixelPacking = false;
}
bool IFFDecoder::loadStream(Common::SeekableReadStream &stream) {
// NOTE: we cannot call destroy() here, like most other decoders do, otherwise the
// settings (stored in _numRelevantPlanes and _pixelPacking) will be cleared.
const uint32 form = stream.readUint32BE();
if (form != ID_FORM) {
warning("Failed reading IFF-file");
return false;
}
stream.skip(4);
const uint32 type = stream.readUint32BE();
switch (type) {
case ID_ILBM:
_type = TYPE_ILBM;
break;
case ID_PBM:
_type = TYPE_PBM;
break;
}
if (type == TYPE_UNKNOWN) {
warning("Failed reading IFF-file");
return false;
}
while (1) {
const uint32 chunkType = stream.readUint32BE();
const uint32 chunkSize = stream.readUint32BE();
if (stream.eos())
break;
switch (chunkType) {
case ID_BMHD:
loadHeader(stream);
break;
case ID_CMAP:
loadPalette(stream, chunkSize);
break;
case ID_CRNG:
loadPaletteRange(stream, chunkSize);
break;
case ID_BODY:
loadBitmap(stream);
break;
default:
stream.skip(chunkSize);
}
}
return true;
}
void IFFDecoder::loadHeader(Common::SeekableReadStream &stream) {
_header.width = stream.readUint16BE();
_header.height = stream.readUint16BE();
_header.x = stream.readUint16BE();
_header.y = stream.readUint16BE();
_header.numPlanes = stream.readByte();
_header.masking = stream.readByte();
_header.compression = stream.readByte();
_header.flags = stream.readByte();
_header.transparentColor = stream.readUint16BE();
_header.xAspect = stream.readByte();
_header.yAspect = stream.readByte();
_header.pageWidth = stream.readUint16BE();
_header.pageHeight = stream.readUint16BE();
assert(_header.width >= 1);
assert(_header.height >= 1);
assert(_header.numPlanes >= 1 && _header.numPlanes <= 8 && _header.numPlanes != 7);
}
void IFFDecoder::loadPalette(Common::SeekableReadStream &stream, const uint32 size) {
_palette = new byte[size];
stream.read(_palette, size);
_paletteColorCount = size / 3;
}
void IFFDecoder::loadPaletteRange(Common::SeekableReadStream &stream, const uint32 size) {
PaletteRange range;
range.timer = stream.readSint16BE();
range.step = stream.readSint16BE();
range.flags = stream.readSint16BE();
range.first = stream.readByte();
range.last = stream.readByte();
_paletteRanges.push_back(range);
}
void IFFDecoder::loadBitmap(Common::SeekableReadStream &stream) {
_numRelevantPlanes = MIN(_numRelevantPlanes, _header.numPlanes);
if (_numRelevantPlanes != 1 && _numRelevantPlanes != 2 && _numRelevantPlanes != 4)
_pixelPacking = false;
uint16 outPitch = _header.width;
if (_pixelPacking)
outPitch /= (8 / _numRelevantPlanes);
// FIXME: CLUT8 is not a proper format for packed bitmaps but there is no way to tell it to use 1, 2 or 4 bits per pixel
_surface = new Graphics::Surface();
_surface->create(outPitch, _header.height, Graphics::PixelFormat::createFormatCLUT8());
if (_type == TYPE_ILBM) {
uint32 scanlinePitch = ((_header.width + 15) >> 4) << 1;
byte *scanlines = new byte[scanlinePitch * _header.numPlanes];
byte *data = (byte *)_surface->getPixels();
for (uint16 i = 0; i < _header.height; ++i) {
byte *scanline = scanlines;
for (uint16 j = 0; j < _header.numPlanes; ++j) {
uint16 outSize = scanlinePitch;
if (_header.compression) {
Common::PackBitsReadStream packStream(stream);
packStream.read(scanline, outSize);
} else {
stream.read(scanline, outSize);
}
scanline += outSize;
}
packPixels(scanlines, data, scanlinePitch, outPitch);
data += outPitch;
}
delete[] scanlines;
} else if (_type == TYPE_PBM) {
byte *data = (byte *)_surface->getPixels();
uint32 outSize = _header.width * _header.height;
if (_header.compression) {
Common::PackBitsReadStream packStream(stream);
packStream.read(data, outSize);
} else {
stream.read(data, outSize);
}
}
}
void IFFDecoder::packPixels(byte *scanlines, byte *data, const uint16 scanlinePitch, const uint16 outPitch) {
uint32 numPixels = _header.width;
if (_pixelPacking)
numPixels = outPitch * (8 / _numRelevantPlanes);
for (uint32 x = 0; x < numPixels; ++x) {
byte *scanline = scanlines;
byte pixel = 0;
byte offset = x >> 3;
byte bit = 0x80 >> (x & 7);
// first build a pixel by scanning all the usable planes in the input
for (uint32 plane = 0; plane < _numRelevantPlanes; ++plane) {
if (scanline[offset] & bit)
pixel |= (1 << plane);
scanline += scanlinePitch;
}
// then output the pixel according to the requested packing
if (!_pixelPacking)
data[x] = pixel;
else if (_numRelevantPlanes == 1)
data[x / 8] |= (pixel << (x & 7));
else if (_numRelevantPlanes == 2)
data[x / 4] |= (pixel << ((x & 3) << 1));
else if (_numRelevantPlanes == 4)
data[x / 2] |= (pixel << ((x & 1) << 2));
}
}
} // End of namespace Graphics