scummvm/audio/softsynth/mt32/LA32WaveGenerator.h
Colin Snover b8d70d26fa MT32: Update Munt to 2.0.1-pre
This update uses upstream commit
f88ef828a600ce66d1f730c8fb2a7f580f6f6165.

This update switches to use the new Munt C++ interface, which
will allow ScummVM to link to an external Munt library instead
of requiring it to be built-in in the future. For the moment,
the emulator is still built-in, since it is not available from
most package repositories.

The Munt driver in ScummVM now uses writeSysex instead of the
(now-private) playSysexWithoutFraming, per recommendation from
the Munt team <https://github.com/munt/munt/pull/30>.

This changeset also removes direct modifications that used to be
made to Munt code, to ease future updates. To update Munt code in
the future:

1. Replace all source files in the `softsynth/mt32` directory with
   new files from the upstream `mt32emu/src` directory;
2. Update `config.h` with the correct version number for the new
   version of Munt;
3. Update `module.mk` to add any new source files that need to be
   built.
2016-12-16 15:44:29 -06:00

252 lines
9.9 KiB
C++
Executable file

/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher
* Copyright (C) 2011-2016 Dean Beeler, Jerome Fisher, Sergey V. Mikayev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef MT32EMU_LA32_WAVE_GENERATOR_H
#define MT32EMU_LA32_WAVE_GENERATOR_H
#include "globals.h"
#include "internals.h"
#include "Types.h"
#if MT32EMU_USE_FLOAT_SAMPLES
#include "LA32FloatWaveGenerator.h"
#else
namespace MT32Emu {
/**
* LA32 performs wave generation in the log-space that allows replacing multiplications by cheap additions
* It's assumed that only low-bit multiplications occur in a few places which are unavoidable like these:
* - interpolation of exponent table (obvious, a delta value has 4 bits)
* - computation of resonance amp decay envelope (the table contains values with 1-2 "1" bits except the very first value 31 but this case can be found using inversion)
* - interpolation of PCM samples (obvious, the wave position counter is in the linear space, there is no log() table in the chip)
* and it seems to be implemented in the same way as in the Boss chip, i.e. right shifted additions which involved noticeable precision loss
* Subtraction is supposed to be replaced by simple inversion
* As the logarithmic sine is always negative, all the logarithmic values are treated as decrements
*/
struct LogSample {
// 16-bit fixed point value, includes 12-bit fractional part
// 4-bit integer part allows to present any 16-bit sample in the log-space
// Obviously, the log value doesn't contain the sign of the resulting sample
Bit16u logValue;
enum {
POSITIVE,
NEGATIVE
} sign;
};
class LA32Utilites {
public:
static Bit16u interpolateExp(const Bit16u fract);
static Bit16s unlog(const LogSample &logSample);
static void addLogSamples(LogSample &logSample1, const LogSample &logSample2);
};
/**
* LA32WaveGenerator is aimed to represent the exact model of LA32 wave generator.
* The output square wave is created by adding high / low linear segments in-between
* the rising and falling cosine segments. Basically, it's very similar to the phase distortion synthesis.
* Behaviour of a true resonance filter is emulated by adding decaying sine wave.
* The beginning and the ending of the resonant sine is multiplied by a cosine window.
* To synthesise sawtooth waves, the resulting square wave is multiplied by synchronous cosine wave.
*/
class LA32WaveGenerator {
//***************************************************************************
// The local copy of partial parameters below
//***************************************************************************
bool active;
// True means the resulting square wave is to be multiplied by the synchronous cosine
bool sawtoothWaveform;
// Logarithmic amp of the wave generator
Bit32u amp;
// Logarithmic frequency of the resulting wave
Bit16u pitch;
// Values in range [1..31]
// Value 1 correspong to the minimum resonance
Bit8u resonance;
// Processed value in range [0..255]
// Values in range [0..128] have no effect and the resulting wave remains symmetrical
// Value 255 corresponds to the maximum possible asymmetric of the resulting wave
Bit8u pulseWidth;
// Composed of the base cutoff in range [78..178] left-shifted by 18 bits and the TVF modifier
Bit32u cutoffVal;
// Logarithmic PCM sample start address
const Bit16s *pcmWaveAddress;
// Logarithmic PCM sample length
Bit32u pcmWaveLength;
// true for looped logarithmic PCM samples
bool pcmWaveLooped;
// false for slave PCM partials in the structures with the ring modulation
bool pcmWaveInterpolated;
//***************************************************************************
// Internal variables below
//***************************************************************************
// Relative position within either the synth wave or the PCM sampled wave
// 0 - start of the positive rising sine segment of the square wave or start of the PCM sample
// 1048576 (2^20) - end of the negative rising sine segment of the square wave
// For PCM waves, the address of the currently playing sample equals (wavePosition / 256)
Bit32u wavePosition;
// Relative position within a square wave phase:
// 0 - start of the phase
// 262144 (2^18) - end of a sine phase in the square wave
Bit32u squareWavePosition;
// Relative position within the positive or negative wave segment:
// 0 - start of the corresponding positive or negative segment of the square wave
// 262144 (2^18) - corresponds to end of the first sine phase in the square wave
// The same increment sampleStep is used to indicate the current position
// since the length of the resonance wave is always equal to four square wave sine segments.
Bit32u resonanceSinePosition;
// The amp of the resonance sine wave grows with the resonance value
// As the resonance value cannot change while the partial is active, it is initialised once
Bit32u resonanceAmpSubtraction;
// The decay speed of resonance sine wave, depends on the resonance value
Bit32u resAmpDecayFactor;
// Fractional part of the pcmPosition
Bit32u pcmInterpolationFactor;
// Current phase of the square wave
enum {
POSITIVE_RISING_SINE_SEGMENT,
POSITIVE_LINEAR_SEGMENT,
POSITIVE_FALLING_SINE_SEGMENT,
NEGATIVE_FALLING_SINE_SEGMENT,
NEGATIVE_LINEAR_SEGMENT,
NEGATIVE_RISING_SINE_SEGMENT
} phase;
// Current phase of the resonance wave
enum ResonancePhase {
POSITIVE_RISING_RESONANCE_SINE_SEGMENT,
POSITIVE_FALLING_RESONANCE_SINE_SEGMENT,
NEGATIVE_FALLING_RESONANCE_SINE_SEGMENT,
NEGATIVE_RISING_RESONANCE_SINE_SEGMENT
} resonancePhase;
// Resulting log-space samples of the square and resonance waves
LogSample squareLogSample;
LogSample resonanceLogSample;
// Processed neighbour log-space samples of the PCM wave
LogSample firstPCMLogSample;
LogSample secondPCMLogSample;
//***************************************************************************
// Internal methods below
//***************************************************************************
Bit32u getSampleStep();
Bit32u getResonanceWaveLengthFactor(Bit32u effectiveCutoffValue);
Bit32u getHighLinearLength(Bit32u effectiveCutoffValue);
void computePositions(Bit32u highLinearLength, Bit32u lowLinearLength, Bit32u resonanceWaveLengthFactor);
void advancePosition();
void generateNextSquareWaveLogSample();
void generateNextResonanceWaveLogSample();
void generateNextSawtoothCosineLogSample(LogSample &logSample) const;
void pcmSampleToLogSample(LogSample &logSample, const Bit16s pcmSample) const;
void generateNextPCMWaveLogSamples();
public:
// Initialise the WG engine for generation of synth partial samples and set up the invariant parameters
void initSynth(const bool sawtoothWaveform, const Bit8u pulseWidth, const Bit8u resonance);
// Initialise the WG engine for generation of PCM partial samples and set up the invariant parameters
void initPCM(const Bit16s * const pcmWaveAddress, const Bit32u pcmWaveLength, const bool pcmWaveLooped, const bool pcmWaveInterpolated);
// Update parameters with respect to TVP, TVA and TVF, and generate next sample
void generateNextSample(const Bit32u amp, const Bit16u pitch, const Bit32u cutoff);
// WG output in the log-space consists of two components which are to be added (or ring modulated) in the linear-space afterwards
LogSample getOutputLogSample(const bool first) const;
// Deactivate the WG engine
void deactivate();
// Return active state of the WG engine
bool isActive() const;
// Return true if the WG engine generates PCM wave samples
bool isPCMWave() const;
// Return current PCM interpolation factor
Bit32u getPCMInterpolationFactor() const;
}; // class LA32WaveGenerator
// LA32PartialPair contains a structure of two partials being mixed / ring modulated
class LA32PartialPair {
LA32WaveGenerator master;
LA32WaveGenerator slave;
bool ringModulated;
bool mixed;
static Bit16s unlogAndMixWGOutput(const LA32WaveGenerator &wg);
public:
enum PairType {
MASTER,
SLAVE
};
// ringModulated should be set to false for the structures with mixing or stereo output
// ringModulated should be set to true for the structures with ring modulation
// mixed is used for the structures with ring modulation and indicates whether the master partial output is mixed to the ring modulator output
void init(const bool ringModulated, const bool mixed);
// Initialise the WG engine for generation of synth partial samples and set up the invariant parameters
void initSynth(const PairType master, const bool sawtoothWaveform, const Bit8u pulseWidth, const Bit8u resonance);
// Initialise the WG engine for generation of PCM partial samples and set up the invariant parameters
void initPCM(const PairType master, const Bit16s * const pcmWaveAddress, const Bit32u pcmWaveLength, const bool pcmWaveLooped);
// Update parameters with respect to TVP, TVA and TVF, and generate next sample
void generateNextSample(const PairType master, const Bit32u amp, const Bit16u pitch, const Bit32u cutoff);
// Perform mixing / ring modulation and return the result
Bit16s nextOutSample();
// Deactivate the WG engine
void deactivate(const PairType master);
// Return active state of the WG engine
bool isActive(const PairType master) const;
}; // class LA32PartialPair
} // namespace MT32Emu
#endif // #if MT32EMU_USE_FLOAT_SAMPLES
#endif // #ifndef MT32EMU_LA32_WAVE_GENERATOR_H