scummvm/engines/gob/variables.cpp
Sven Hesse db13af5337 GOB: Make the variable stack endianness-independent
Since Urban Runner casts int16s to uint32 before pushing them onto the
stack and after popping assumes it's little endian, we have explicitely
preserve the variable space endianness while pushing/popping.

svn-id: r55277
2011-01-17 13:37:14 +00:00

350 lines
7.6 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "common/endian.h"
#include "common/str.h"
#include "gob/gob.h"
#include "gob/variables.h"
namespace Gob {
Variables::Variables(uint32 size) {
_size = size;
_vars = new byte[_size];
clear();
}
Variables::~Variables() {
delete[] _vars;
}
uint32 Variables::getSize() const {
return _size;
}
void Variables::clear() {
memset(_vars, 0, _size);
}
void Variables::writeVar8(uint32 var, uint8 value) {
writeOff8(var * 4, value);
}
void Variables::writeVar16(uint32 var, uint16 value) {
writeOff16(var * 4, value);
}
void Variables::writeVar32(uint32 var, uint32 value) {
writeOff32(var * 4, value);
}
void Variables::writeVarString(uint32 var, const char *value) {
writeOffString(var * 4, value);
}
void Variables::writeOff8(uint32 offset, uint8 value) {
write8(_vars + offset, value);
}
void Variables::writeOff16(uint32 offset, uint16 value) {
write16(_vars + offset, value);
}
void Variables::writeOff32(uint32 offset, uint32 value) {
write32(_vars + offset, value);
}
void Variables::writeOffString(uint32 offset, const char *value) {
strcpy((char *)(_vars + offset), value);
}
uint8 Variables::readVar8(uint32 var) const {
return readOff8(var * 4);
}
uint16 Variables::readVar16(uint32 var) const {
return readOff16(var * 4);
}
uint32 Variables::readVar32(uint32 var) const {
return readOff32(var * 4);
}
void Variables::readVarString(uint32 var, char *value, uint32 length) {
readOffString(var * 4, value, length);
}
uint8 Variables::readOff8(uint32 offset) const {
return read8(_vars + offset);
}
uint16 Variables::readOff16(uint32 offset) const {
return read16(_vars + offset);
}
uint32 Variables::readOff32(uint32 offset) const {
return read32(_vars + offset);
}
void Variables::readOffString(uint32 offset, char *value, uint32 length) {
Common::strlcpy(value, (const char *)(_vars + offset), length);
}
const uint8 *Variables::getAddressVar8(uint32 var) const {
return getAddressOff8(var * 4);
}
uint8 *Variables::getAddressVar8(uint32 var) {
return getAddressOff8(var * 4);
}
const char *Variables::getAddressVarString(uint32 var) const {
return getAddressOffString(var * 4);
}
char *Variables::getAddressVarString(uint32 var) {
return getAddressOffString(var * 4);
}
const uint8 *Variables::getAddressOff8(uint32 offset) const {
return ((const uint8 *)(_vars + offset));
}
uint8 *Variables::getAddressOff8(uint32 offset) {
return ((uint8 *)(_vars + offset));
}
const char *Variables::getAddressOffString(uint32 offset) const {
return ((const char *)(_vars + offset));
}
char *Variables::getAddressOffString(uint32 offset) {
return ((char *)(_vars + offset));
}
bool Variables::copyTo(uint32 offset, byte *variables, uint32 n) const {
if ((offset + n) > _size)
return false;
if (variables)
memcpy(variables, _vars + offset, n);
return true;
}
bool Variables::copyFrom(uint32 offset, const byte *variables, uint32 n) {
if (((offset + n) > _size) || !variables)
return false;
memcpy(_vars + offset, variables, n);
return true;
}
VariablesLE::VariablesLE(uint32 size) : Variables(size) {
}
VariablesLE::~VariablesLE() {
}
void VariablesLE::write8(byte *buf, uint8 data) const {
*buf = (byte) data;
}
void VariablesLE::write16(byte *buf, uint16 data) const {
WRITE_LE_UINT16(buf, data);
}
void VariablesLE::write32(byte *buf, uint32 data) const {
WRITE_LE_UINT32(buf, data);
}
uint8 VariablesLE::read8(const byte *buf) const {
return (uint8) *buf;
}
uint16 VariablesLE::read16(const byte *buf) const {
return READ_LE_UINT16(buf);
}
uint32 VariablesLE::read32(const byte *buf) const {
return READ_LE_UINT32(buf);
}
VariablesBE::VariablesBE(uint32 size) : Variables(size) {
}
VariablesBE::~VariablesBE() {
}
void VariablesBE::write8(byte *buf, uint8 data) const {
*buf = (byte) data;
}
void VariablesBE::write16(byte *buf, uint16 data) const {
WRITE_BE_UINT16(buf, data);
}
void VariablesBE::write32(byte *buf, uint32 data) const {
WRITE_BE_UINT32(buf, data);
}
uint8 VariablesBE::read8(const byte *buf) const {
return (uint8) *buf;
}
uint16 VariablesBE::read16(const byte *buf) const {
return READ_BE_UINT16(buf);
}
uint32 VariablesBE::read32(const byte *buf) const {
return READ_BE_UINT32(buf);
}
VariableReference::VariableReference() {
_vars = 0;
_offset = 0;
}
VariableReference::VariableReference(Variables &vars, uint32 offset, Variables::Type type) {
set(vars, offset, type);
}
VariableReference::~VariableReference() {
}
void VariableReference::set(Variables &vars, uint32 offset, Variables::Type type) {
_vars = &vars;
_offset = offset;
_type = type;
}
VariableReference &VariableReference::operator=(uint32 value) {
if (_vars) {
switch (_type) {
case Variables::kVariableType8:
_vars->writeOff8(_offset, (uint8) value);
break;
case Variables::kVariableType16:
_vars->writeOff16(_offset, (uint16) value);
break;
case Variables::kVariableType32:
_vars->writeOff32(_offset, value);
break;
}
}
return *this;
}
VariableReference::operator uint32() {
if (_vars) {
switch (_type) {
case Variables::kVariableType8:
return (uint32) _vars->readOff8(_offset);
case Variables::kVariableType16:
return (uint32) _vars->readOff16(_offset);
case Variables::kVariableType32:
return _vars->readOff32(_offset);
}
}
return 0;
}
VariableReference &VariableReference::operator+=(uint32 value) {
return (*this = (*this + value));
}
VariableReference &VariableReference::operator*=(uint32 value) {
return (*this = (*this * value));
}
VariableStack::VariableStack(uint32 size) : _size(size), _position(0) {
_stack = new byte[_size];
memset(_stack, 0, _size);
}
VariableStack::~VariableStack() {
delete[] _stack;
}
void VariableStack::pushData(const Variables &vars, uint32 offset, uint32 size) {
// Sanity checks
assert(size < 256);
assert((_position + size) < _size);
vars.copyTo(offset, _stack + _position, size);
_position += size;
_stack[_position++] = size;
_stack[_position++] = 0;
}
void VariableStack::pushInt(uint32 value) {
// Sanity check
assert((_position + 4) < _size);
memcpy(_stack + _position, &value, 4);
_position += 4;
_stack[_position++] = 4;
_stack[_position++] = 1;
}
void VariableStack::pop(Variables &vars, uint32 offset) {
// Sanity check
assert(_position >= 2);
bool isInt = _stack[--_position] == 1;
uint32 size = _stack[--_position];
// Sanity check
assert(_position >= size);
_position -= size;
if (isInt) {
// If it's an int, explicitely call the int variable writing method,
// to make sure the variable space endianness is preserved.
assert(size == 4);
uint32 value;
memcpy(&value, _stack + _position, 4);
vars.writeOff32(offset, value);
} else
// Otherwise, use do a raw copy
vars.copyFrom(offset, _stack + _position, size);
}
} // End of namespace Gob