scummvm/engines/sci/engine/klists.cpp
Colin Snover b2966f3fc8 SCI32: Fix support for RAMA demo
Fixes Trac#10251.
2017-09-30 01:08:12 -05:00

923 lines
25 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "sci/engine/features.h"
#include "sci/engine/state.h"
#include "sci/engine/selector.h"
#include "sci/engine/kernel.h"
namespace Sci {
//#define CHECK_LISTS // adds sanity checking for lists and errors out when problems are found
#ifdef CHECK_LISTS
static bool isSaneNodePointer(SegManager *segMan, reg_t addr) {
bool havePrev = false;
reg_t prev = addr;
do {
Node *node = segMan->lookupNode(addr, false);
if (!node) {
if ((g_sci->getGameId() == GID_ICEMAN) && (g_sci->getEngineState()->currentRoomNumber() == 40)) {
// ICEMAN: when plotting course, unDrawLast is called by startPlot::changeState
// there is no previous entry so we get 0 in here
} else if ((g_sci->getGameId() == GID_HOYLE1) && (g_sci->getEngineState()->currentRoomNumber() == 3)) {
// HOYLE1: after sorting cards in hearts, in the next round
// we get an invalid node - bug #3038433
} else {
error("isSaneNodePointer: Node at %04x:%04x wasn't found", PRINT_REG(addr));
}
return false;
}
if (havePrev && node->pred != prev) {
error("isSaneNodePointer: Node at %04x:%04x points to invalid predecessor %04x:%04x (should be %04x:%04x)",
PRINT_REG(addr), PRINT_REG(node->pred), PRINT_REG(prev));
//node->pred = prev; // fix the problem in the node
return false;
}
prev = addr;
addr = node->succ;
havePrev = true;
} while (!addr.isNull());
return true;
}
static void checkListPointer(SegManager *segMan, reg_t addr) {
List *list = segMan->lookupList(addr);
if (!list) {
error("checkListPointer (list %04x:%04x): The requested list wasn't found",
PRINT_REG(addr));
return;
}
if (list->first.isNull() && list->last.isNull()) {
// Empty list is fine
} else if (!list->first.isNull() && !list->last.isNull()) {
// Normal list
Node *node_a = segMan->lookupNode(list->first, false);
Node *node_z = segMan->lookupNode(list->last, false);
if (!node_a) {
error("checkListPointer (list %04x:%04x): missing first node", PRINT_REG(addr));
return;
}
if (!node_z) {
error("checkListPointer (list %04x:%04x): missing last node", PRINT_REG(addr));
return;
}
if (!node_a->pred.isNull()) {
error("checkListPointer (list %04x:%04x): First node of the list points to a predecessor node",
PRINT_REG(addr));
//node_a->pred = NULL_REG; // fix the problem in the node
return;
}
if (!node_z->succ.isNull()) {
error("checkListPointer (list %04x:%04x): Last node of the list points to a successor node",
PRINT_REG(addr));
//node_z->succ = NULL_REG; // fix the problem in the node
return;
}
isSaneNodePointer(segMan, list->first);
} else {
// Not sane list... it's missing pointers to the first or last element
if (list->first.isNull())
error("checkListPointer (list %04x:%04x): missing pointer to first element",
PRINT_REG(addr));
if (list->last.isNull())
error("checkListPointer (list %04x:%04x): missing pointer to last element",
PRINT_REG(addr));
}
}
#endif
reg_t kNewList(EngineState *s, int argc, reg_t *argv) {
reg_t listRef;
List *list = s->_segMan->allocateList(&listRef);
list->first = list->last = NULL_REG;
debugC(kDebugLevelNodes, "New listRef at %04x:%04x", PRINT_REG(listRef));
return listRef; // Return list base address
}
reg_t kDisposeList(EngineState *s, int argc, reg_t *argv) {
// This function is not needed in ScummVM. The garbage collector
// cleans up unused objects automatically
return s->r_acc;
}
reg_t kNewNode(EngineState *s, int argc, reg_t *argv) {
reg_t nodeValue = argv[0];
// Some SCI32 games call this with 1 parameter (e.g. the demo of Phantasmagoria).
// Set the key to be the same as the value in this case
reg_t nodeKey = (argc == 2) ? argv[1] : argv[0];
s->r_acc = s->_segMan->newNode(nodeValue, nodeKey);
debugC(kDebugLevelNodes, "New nodeRef at %04x:%04x", PRINT_REG(s->r_acc));
return s->r_acc;
}
reg_t kFirstNode(EngineState *s, int argc, reg_t *argv) {
if (argv[0].isNull())
return NULL_REG;
List *list = s->_segMan->lookupList(argv[0]);
if (list) {
#ifdef CHECK_LISTS
checkListPointer(s->_segMan, argv[0]);
#endif
return list->first;
} else {
return NULL_REG;
}
}
reg_t kLastNode(EngineState *s, int argc, reg_t *argv) {
if (argv[0].isNull())
return NULL_REG;
List *list = s->_segMan->lookupList(argv[0]);
if (list) {
#ifdef CHECK_LISTS
checkListPointer(s->_segMan, argv[0]);
#endif
return list->last;
} else {
return NULL_REG;
}
}
reg_t kEmptyList(EngineState *s, int argc, reg_t *argv) {
if (argv[0].isNull())
return NULL_REG;
List *list = s->_segMan->lookupList(argv[0]);
#ifdef CHECK_LISTS
checkListPointer(s->_segMan, argv[0]);
#endif
return make_reg(0, ((list) ? list->first.isNull() : 0));
}
static void addToFront(EngineState *s, reg_t listRef, reg_t nodeRef) {
List *list = s->_segMan->lookupList(listRef);
Node *newNode = s->_segMan->lookupNode(nodeRef);
debugC(kDebugLevelNodes, "Adding node %04x:%04x to end of list %04x:%04x", PRINT_REG(nodeRef), PRINT_REG(listRef));
if (!newNode)
error("Attempt to add non-node (%04x:%04x) to list at %04x:%04x", PRINT_REG(nodeRef), PRINT_REG(listRef));
#ifdef CHECK_LISTS
checkListPointer(s->_segMan, listRef);
#endif
newNode->pred = NULL_REG;
newNode->succ = list->first;
// Set node to be the first and last node if it's the only node of the list
if (list->first.isNull())
list->last = nodeRef;
else {
Node *oldNode = s->_segMan->lookupNode(list->first);
oldNode->pred = nodeRef;
}
list->first = nodeRef;
}
static void addToEnd(EngineState *s, reg_t listRef, reg_t nodeRef) {
List *list = s->_segMan->lookupList(listRef);
Node *newNode = s->_segMan->lookupNode(nodeRef);
debugC(kDebugLevelNodes, "Adding node %04x:%04x to end of list %04x:%04x", PRINT_REG(nodeRef), PRINT_REG(listRef));
if (!newNode)
error("Attempt to add non-node (%04x:%04x) to list at %04x:%04x", PRINT_REG(nodeRef), PRINT_REG(listRef));
#ifdef CHECK_LISTS
checkListPointer(s->_segMan, listRef);
#endif
newNode->pred = list->last;
newNode->succ = NULL_REG;
// Set node to be the first and last node if it's the only node of the list
if (list->last.isNull())
list->first = nodeRef;
else {
Node *old_n = s->_segMan->lookupNode(list->last);
old_n->succ = nodeRef;
}
list->last = nodeRef;
}
reg_t kNextNode(EngineState *s, int argc, reg_t *argv) {
Node *n = s->_segMan->lookupNode(argv[0]);
#ifdef CHECK_LISTS
if (!isSaneNodePointer(s->_segMan, argv[0]))
return NULL_REG;
#endif
return n->succ;
}
reg_t kPrevNode(EngineState *s, int argc, reg_t *argv) {
Node *n = s->_segMan->lookupNode(argv[0]);
#ifdef CHECK_LISTS
if (!isSaneNodePointer(s->_segMan, argv[0]))
return NULL_REG;
#endif
return n->pred;
}
reg_t kNodeValue(EngineState *s, int argc, reg_t *argv) {
Node *n = s->_segMan->lookupNode(argv[0]);
#ifdef CHECK_LISTS
if (!isSaneNodePointer(s->_segMan, argv[0]))
return NULL_REG;
#endif
// ICEMAN: when plotting a course in room 40, unDrawLast is called by
// startPlot::changeState, but there is no previous entry, so we get 0 here
return n ? n->value : NULL_REG;
}
reg_t kAddToFront(EngineState *s, int argc, reg_t *argv) {
addToFront(s, argv[0], argv[1]);
if (argc == 3)
s->_segMan->lookupNode(argv[1])->key = argv[2];
return s->r_acc;
}
reg_t kAddToEnd(EngineState *s, int argc, reg_t *argv) {
addToEnd(s, argv[0], argv[1]);
if (argc == 3)
s->_segMan->lookupNode(argv[1])->key = argv[2];
return s->r_acc;
}
reg_t kAddAfter(EngineState *s, int argc, reg_t *argv) {
List *list = s->_segMan->lookupList(argv[0]);
Node *firstNode = s->_segMan->lookupNode(argv[1]);
Node *newNode = s->_segMan->lookupNode(argv[2]);
#ifdef CHECK_LISTS
checkListPointer(s->_segMan, argv[0]);
#endif
if (!newNode) {
error("New 'node' %04x:%04x is not a node", PRINT_REG(argv[2]));
return NULL_REG;
}
if (argc != 3 && argc != 4) {
error("kAddAfter: Haven't got 3 or 4 arguments, aborting");
return NULL_REG;
}
if (argc == 4)
newNode->key = argv[3];
if (firstNode) { // We're really appending after
const reg_t oldNext = firstNode->succ;
newNode->pred = argv[1];
firstNode->succ = argv[2];
newNode->succ = oldNext;
if (oldNext.isNull()) // Appended after last node?
// Set new node as last list node
list->last = argv[2];
else
s->_segMan->lookupNode(oldNext)->pred = argv[2];
} else {
addToFront(s, argv[0], argv[2]); // Set as initial list node
}
return s->r_acc;
}
reg_t kAddBefore(EngineState *s, int argc, reg_t *argv) {
List *list = s->_segMan->lookupList(argv[0]);
Node *firstNode = s->_segMan->lookupNode(argv[1]);
Node *newNode = s->_segMan->lookupNode(argv[2]);
#ifdef CHECK_LISTS
checkListPointer(s->_segMan, argv[0]);
#endif
if (!newNode) {
error("New 'node' %04x:%04x is not a node", PRINT_REG(argv[2]));
return NULL_REG;
}
if (argc != 3 && argc != 4) {
error("kAddBefore: Haven't got 3 or 4 arguments, aborting");
return NULL_REG;
}
if (argc == 4)
newNode->key = argv[3];
if (firstNode) { // We're really appending before
const reg_t oldPred = firstNode->pred;
newNode->succ = argv[1];
firstNode->pred = argv[2];
newNode->pred = oldPred;
if (oldPred.isNull()) // Appended before first node?
// Set new node as first list node
list->first = argv[2];
else
s->_segMan->lookupNode(oldPred)->succ = argv[2];
} else {
addToFront(s, argv[0], argv[2]); // Set as initial list node
}
return s->r_acc;
}
reg_t kFindKey(EngineState *s, int argc, reg_t *argv) {
reg_t node_pos;
reg_t key = argv[1];
reg_t list_pos = argv[0];
debugC(kDebugLevelNodes, "Looking for key %04x:%04x in list %04x:%04x", PRINT_REG(key), PRINT_REG(list_pos));
#ifdef CHECK_LISTS
checkListPointer(s->_segMan, argv[0]);
#endif
node_pos = s->_segMan->lookupList(list_pos)->first;
debugC(kDebugLevelNodes, "First node at %04x:%04x", PRINT_REG(node_pos));
while (!node_pos.isNull()) {
Node *n = s->_segMan->lookupNode(node_pos);
if (n->key == key) {
debugC(kDebugLevelNodes, " Found key at %04x:%04x", PRINT_REG(node_pos));
return node_pos;
}
node_pos = n->succ;
debugC(kDebugLevelNodes, "NextNode at %04x:%04x", PRINT_REG(node_pos));
}
debugC(kDebugLevelNodes, "Looking for key without success");
return NULL_REG;
}
reg_t kDeleteKey(EngineState *s, int argc, reg_t *argv) {
reg_t node_pos = kFindKey(s, 2, argv);
List *list = s->_segMan->lookupList(argv[0]);
if (node_pos.isNull())
return NULL_REG; // Signal failure
Node *n = s->_segMan->lookupNode(node_pos);
#ifdef ENABLE_SCI32
for (int i = 1; i <= list->numRecursions; ++i) {
if (list->nextNodes[i] == node_pos) {
list->nextNodes[i] = n->succ;
}
}
#endif
if (list->first == node_pos)
list->first = n->succ;
if (list->last == node_pos)
list->last = n->pred;
if (!n->pred.isNull())
s->_segMan->lookupNode(n->pred)->succ = n->succ;
if (!n->succ.isNull())
s->_segMan->lookupNode(n->succ)->pred = n->pred;
// Erase references to the predecessor and successor nodes, as the game
// scripts could reference the node itself again.
// Happens in the intro of QFG1 and in Longbow, when exiting the cave.
n->pred = NULL_REG;
n->succ = NULL_REG;
return make_reg(0, 1); // Signal success
}
struct sort_temp_t {
reg_t key, value;
reg_t order;
};
int sort_temp_cmp(const void *p1, const void *p2) {
const sort_temp_t *st1 = (const sort_temp_t *)p1;
const sort_temp_t *st2 = (const sort_temp_t *)p2;
if (st1->order.getSegment() < st2->order.getSegment() ||
(st1->order.getSegment() == st2->order.getSegment() &&
st1->order.getOffset() < st2->order.getOffset()))
return -1;
if (st1->order.getSegment() > st2->order.getSegment() ||
(st1->order.getSegment() == st2->order.getSegment() &&
st1->order.getOffset() > st2->order.getOffset()))
return 1;
return 0;
}
reg_t kSort(EngineState *s, int argc, reg_t *argv) {
SegManager *segMan = s->_segMan;
reg_t source = argv[0];
reg_t dest = argv[1];
reg_t order_func = argv[2];
int input_size = (int16)readSelectorValue(segMan, source, SELECTOR(size));
reg_t input_data = readSelector(segMan, source, SELECTOR(elements));
reg_t output_data = readSelector(segMan, dest, SELECTOR(elements));
List *list;
Node *node;
if (!input_size)
return s->r_acc;
if (output_data.isNull()) {
list = s->_segMan->allocateList(&output_data);
list->first = list->last = NULL_REG;
writeSelector(segMan, dest, SELECTOR(elements), output_data);
}
writeSelectorValue(segMan, dest, SELECTOR(size), input_size);
list = s->_segMan->lookupList(input_data);
node = s->_segMan->lookupNode(list->first);
sort_temp_t *temp_array = (sort_temp_t *)malloc(sizeof(sort_temp_t) * input_size);
int i = 0;
while (node) {
reg_t params[1] = { node->value };
invokeSelector(s, order_func, SELECTOR(doit), argc, argv, 1, params);
temp_array[i].key = node->key;
temp_array[i].value = node->value;
temp_array[i].order = s->r_acc;
i++;
node = s->_segMan->lookupNode(node->succ);
}
qsort(temp_array, input_size, sizeof(sort_temp_t), sort_temp_cmp);
for (i = 0;i < input_size;i++) {
reg_t lNode = s->_segMan->newNode(temp_array[i].value, temp_array[i].key);
addToEnd(s, output_data, lNode);
}
free(temp_array);
return s->r_acc;
}
// SCI32 list functions
#ifdef ENABLE_SCI32
reg_t kListAt(EngineState *s, int argc, reg_t *argv) {
if (argc != 2) {
error("kListAt called with %d parameters", argc);
return NULL_REG;
}
List *list = s->_segMan->lookupList(argv[0]);
reg_t curAddress = list->first;
if (list->first.isNull()) {
// Happens in Torin when examining Di's locket in chapter 3
return NULL_REG;
}
Node *curNode = s->_segMan->lookupNode(curAddress);
reg_t curObject = curNode->value;
int16 listIndex = argv[1].toUint16();
int curIndex = 0;
while (curIndex != listIndex) {
if (curNode->succ.isNull()) { // end of the list?
return NULL_REG;
}
curAddress = curNode->succ;
curNode = s->_segMan->lookupNode(curAddress);
curObject = curNode->value;
curIndex++;
}
// Update the virtual file selected in the character import screen of QFG4.
// For the SCI0-SCI1.1 version of this, check kDrawControl().
if (g_sci->inQfGImportRoom() && !strcmp(s->_segMan->getObjectName(curObject), "SelectorDText"))
s->_chosenQfGImportItem = listIndex;
return curObject;
}
reg_t kListIndexOf(EngineState *s, int argc, reg_t *argv) {
List *list = s->_segMan->lookupList(argv[0]);
reg_t curAddress = list->first;
Node *curNode = s->_segMan->lookupNode(curAddress);
reg_t curObject;
uint16 curIndex = 0;
while (curNode) {
curObject = curNode->value;
if (curObject == argv[1])
return make_reg(0, curIndex);
curAddress = curNode->succ;
curNode = s->_segMan->lookupNode(curAddress);
curIndex++;
}
return SIGNAL_REG;
}
reg_t kListEachElementDo(EngineState *s, int argc, reg_t *argv) {
const reg_t listReg = argv[0];
List *list = s->_segMan->lookupList(listReg);
Node *curNode = s->_segMan->lookupNode(list->first);
Selector slc = argv[1].toUint16();
ObjVarRef address;
++list->numRecursions;
if (list->numRecursions >= ARRAYSIZE(list->nextNodes)) {
error("Too much recursion in kListEachElementDo");
}
while (curNode) {
// We get the next node here as the current node might be deleted by the
// invoke. In the case that the next node is also deleted, kDeleteKey
// needs to be able to adjust the location of the next node, which is
// why it is stored on the list instead of on the stack
list->nextNodes[list->numRecursions] = curNode->succ;
reg_t curObject = curNode->value;
// First, check if the target selector is a variable
if (lookupSelector(s->_segMan, curObject, slc, &address, NULL) == kSelectorVariable) {
// This can only happen with 3 params (list, target selector, variable)
if (argc != 3) {
error("kListEachElementDo: Attempted to modify a variable selector with %d params", argc);
} else {
writeSelector(s->_segMan, curObject, slc, argv[2]);
}
} else {
invokeSelector(s, curObject, slc, argc, argv, argc - 2, argv + 2);
// Check if the call above leads to a game restore, in which case
// the segment manager will be reset, and the original list will
// be invalidated
if (s->abortScriptProcessing == kAbortLoadGame)
return s->r_acc;
}
curNode = s->_segMan->lookupNode(list->nextNodes[list->numRecursions]);
}
if (s->_segMan->isValidAddr(listReg, SEG_TYPE_LISTS)) {
--list->numRecursions;
}
return s->r_acc;
}
reg_t kListFirstTrue(EngineState *s, int argc, reg_t *argv) {
const reg_t listReg = argv[0];
List *list = s->_segMan->lookupList(listReg);
Node *curNode = s->_segMan->lookupNode(list->first);
Selector slc = argv[1].toUint16();
ObjVarRef address;
s->r_acc = NULL_REG;
++list->numRecursions;
if (list->numRecursions >= ARRAYSIZE(list->nextNodes)) {
error("Too much recursion in kListFirstTrue");
}
while (curNode) {
// We get the next node here as the current node might be deleted by the
// invoke. In the case that the next node is also deleted, kDeleteKey
// needs to be able to adjust the location of the next node, which is
// why it is stored on the list instead of on the stack
list->nextNodes[list->numRecursions] = curNode->succ;
reg_t curObject = curNode->value;
// First, check if the target selector is a variable
if (lookupSelector(s->_segMan, curObject, slc, &address, NULL) == kSelectorVariable) {
// If it's a variable selector, check its value.
// Example: script 64893 in Torin, MenuHandler::isHilited checks
// all children for variable selector 0x03ba (bHilited).
if (!readSelector(s->_segMan, curObject, slc).isNull()) {
s->r_acc = curObject;
break;
}
} else {
invokeSelector(s, curObject, slc, argc, argv, argc - 2, argv + 2);
// Check if the call above leads to a game restore, in which case
// the segment manager will be reset, and the original list will
// be invalidated
if (s->abortScriptProcessing == kAbortLoadGame)
return s->r_acc;
// Check if the result is true
if (!s->r_acc.isNull()) {
s->r_acc = curObject;
break;
}
}
curNode = s->_segMan->lookupNode(list->nextNodes[list->numRecursions]);
}
if (s->_segMan->isValidAddr(listReg, SEG_TYPE_LISTS)) {
--list->numRecursions;
}
return s->r_acc;
}
reg_t kListAllTrue(EngineState *s, int argc, reg_t *argv) {
const reg_t listReg = argv[0];
List *list = s->_segMan->lookupList(listReg);
Node *curNode = s->_segMan->lookupNode(list->first);
reg_t curObject;
Selector slc = argv[1].toUint16();
ObjVarRef address;
s->r_acc = TRUE_REG;
++list->numRecursions;
if (list->numRecursions >= ARRAYSIZE(list->nextNodes)) {
error("Too much recursion in kListAllTrue");
}
while (curNode) {
// We get the next node here as the current node might be deleted by the
// invoke. In the case that the next node is also deleted, kDeleteKey
// needs to be able to adjust the location of the next node, which is
// why it is stored on the list instead of on the stack
list->nextNodes[list->numRecursions] = curNode->succ;
curObject = curNode->value;
// First, check if the target selector is a variable
if (lookupSelector(s->_segMan, curObject, slc, &address, NULL) == kSelectorVariable) {
// If it's a variable selector, check its value
s->r_acc = readSelector(s->_segMan, curObject, slc);
} else {
invokeSelector(s, curObject, slc, argc, argv, argc - 2, argv + 2);
// Check if the call above leads to a game restore, in which case
// the segment manager will be reset, and the original list will
// be invalidated
if (s->abortScriptProcessing == kAbortLoadGame)
return s->r_acc;
}
// Check if the result isn't true
if (s->r_acc.isNull())
break;
curNode = s->_segMan->lookupNode(list->nextNodes[list->numRecursions]);
}
if (s->_segMan->isValidAddr(listReg, SEG_TYPE_LISTS)) {
--list->numRecursions;
}
return s->r_acc;
}
reg_t kListSort(EngineState *s, int argc, reg_t *argv) {
List *list = s->_segMan->lookupList(argv[0]);
const int16 selector = argv[1].toSint16();
const bool isDescending = argc > 2 ? (bool)argv[2].toUint16() : false;
reg_t firstNode = list->first;
for (reg_t node = firstNode; node != NULL_REG; node = s->_segMan->lookupNode(firstNode)->succ) {
reg_t a;
if (selector == -1) {
a = s->_segMan->lookupNode(node)->value;
} else {
a = readSelector(s->_segMan, s->_segMan->lookupNode(node)->value, selector);
}
firstNode = node;
for (reg_t newNode = s->_segMan->lookupNode(node)->succ; newNode != NULL_REG; newNode = s->_segMan->lookupNode(newNode)->succ) {
reg_t b;
if (selector == -1) {
b = s->_segMan->lookupNode(newNode)->value;
} else {
b = readSelector(s->_segMan, s->_segMan->lookupNode(newNode)->value, selector);
}
if ((!isDescending && b < a) || (isDescending && a < b)) {
firstNode = newNode;
a = b;
}
}
if (firstNode != node) {
reg_t buf[4] = { argv[0], s->_segMan->lookupNode(firstNode)->key };
kDeleteKey(s, 2, buf);
buf[1] = node;
buf[2] = firstNode;
buf[3] = s->_segMan->lookupNode(firstNode)->value;
kAddBefore(s, 4, buf);
}
}
return s->r_acc;
}
reg_t kList(EngineState *s, int argc, reg_t *argv) {
if (!s)
return make_reg(0, getSciVersion());
error("not supposed to call this");
}
reg_t kMoveToFront(EngineState *s, int argc, reg_t *argv) {
error("Unimplemented function kMoveToFront called");
return s->r_acc;
}
reg_t kMoveToEnd(EngineState *s, int argc, reg_t *argv) {
error("Unimplemented function kMoveToEnd called");
return s->r_acc;
}
reg_t kArray(EngineState *s, int argc, reg_t *argv) {
if (!s)
return make_reg(0, getSciVersion());
error("not supposed to call this");
}
reg_t kArrayNew(EngineState *s, int argc, reg_t *argv) {
uint16 size = argv[0].toUint16();
const SciArrayType type = (SciArrayType)argv[1].toUint16();
if (type == kArrayTypeString) {
++size;
}
reg_t arrayHandle;
s->_segMan->allocateArray(type, size, &arrayHandle);
return arrayHandle;
}
reg_t kArrayGetSize(EngineState *s, int argc, reg_t *argv) {
const SciArray &array = *s->_segMan->lookupArray(argv[0]);
return make_reg(0, array.size());
}
reg_t kArrayGetElement(EngineState *s, int argc, reg_t *argv) {
if (getSciVersion() == SCI_VERSION_2_1_LATE) {
return kStringGetChar(s, argc, argv);
}
SciArray &array = *s->_segMan->lookupArray(argv[0]);
return array.getAsID(argv[1].toUint16());
}
reg_t kArraySetElements(EngineState *s, int argc, reg_t *argv) {
SciArray &array = *s->_segMan->lookupArray(argv[0]);
array.setElements(argv[1].toUint16(), argc - 2, argv + 2);
return argv[0];
}
reg_t kArrayFree(EngineState *s, int argc, reg_t *argv) {
if (getSciVersion() == SCI_VERSION_2_1_LATE && !s->_segMan->isValidAddr(argv[0], SEG_TYPE_ARRAY)) {
return s->r_acc;
}
s->_segMan->freeArray(argv[0]);
return s->r_acc;
}
reg_t kArrayFill(EngineState *s, int argc, reg_t *argv) {
SciArray &array = *s->_segMan->lookupArray(argv[0]);
array.fill(argv[1].toUint16(), argv[2].toUint16(), argv[3]);
return argv[0];
}
reg_t kArrayCopy(EngineState *s, int argc, reg_t *argv) {
SciArray &target = *s->_segMan->lookupArray(argv[0]);
const uint16 targetIndex = argv[1].toUint16();
const uint16 sourceIndex = argv[3].toUint16();
const int16 count = argv[4].toSint16();
if (!s->_segMan->isArray(argv[2])) {
// String copies may be made from static script data
SciArray source;
source.setType(kArrayTypeString);
source.fromString(s->_segMan->getString(argv[2]));
target.copy(source, sourceIndex, targetIndex, count);
} else {
target.copy(*s->_segMan->lookupArray(argv[2]), sourceIndex, targetIndex, count);
}
return argv[0];
}
reg_t kArrayDuplicate(EngineState *s, int argc, reg_t *argv) {
reg_t targetHandle;
// String duplicates may be made from static script data
if (!s->_segMan->isArray(argv[0])) {
const Common::String source = s->_segMan->getString(argv[0]);
SciArray &target = *s->_segMan->allocateArray(kArrayTypeString, source.size(), &targetHandle);
target.fromString(source);
} else {
SciArray &source = *s->_segMan->lookupArray(argv[0]);
SciArray &target = *s->_segMan->allocateArray(source.getType(), source.size(), &targetHandle);
target = source;
}
return targetHandle;
}
reg_t kArrayGetData(EngineState *s, int argc, reg_t *argv) {
if (s->_segMan->isObject(argv[0])) {
return readSelector(s->_segMan, argv[0], SELECTOR(data));
}
return argv[0];
}
reg_t kArrayByteCopy(EngineState *s, int argc, reg_t *argv) {
SciArray &target = *s->_segMan->lookupArray(argv[0]);
const uint16 targetOffset = argv[1].toUint16();
const SciArray &source = *s->_segMan->lookupArray(argv[2]);
const uint16 sourceOffset = argv[3].toUint16();
const uint16 count = argv[4].toUint16();
target.byteCopy(source, sourceOffset, targetOffset, count);
return argv[0];
}
#endif
} // End of namespace Sci