scummvm/engines/sci/engine/vm.cpp
Martin Kiewitz 2a47f573dd SCI: some sci32 fixes
kOnMe, kLocal2Global, kGlobal2Local now hires capable, hotspots seem to work in lsl6 and sq6, although pressing on start in sq6 doesn't work yet, you need to click on the rightmost/bottom area

svn-id: r51074
2010-07-20 21:22:39 +00:00

2195 lines
80 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "common/debug.h"
#include "common/debug-channels.h"
#include "common/stack.h"
#include "common/config-manager.h"
#include "sci/sci.h"
#include "sci/console.h"
#include "sci/resource.h"
#include "sci/engine/features.h"
#include "sci/engine/state.h"
#include "sci/engine/kernel.h"
#include "sci/engine/script.h"
#include "sci/engine/seg_manager.h"
#include "sci/engine/selector.h" // for SELECTOR
#include "sci/engine/gc.h"
namespace Sci {
const reg_t NULL_REG = {0, 0};
const reg_t SIGNAL_REG = {0, SIGNAL_OFFSET};
const reg_t TRUE_REG = {0, 1};
//#define VM_DEBUG_SEND
#define SCI_XS_CALLEE_LOCALS ((SegmentId)-1)
#define END Script_None
opcode_format g_opcode_formats[128][4] = {
/*00*/
{Script_None}, {Script_None}, {Script_None}, {Script_None},
/*04*/
{Script_None}, {Script_None}, {Script_None}, {Script_None},
/*08*/
{Script_None}, {Script_None}, {Script_None}, {Script_None},
/*0C*/
{Script_None}, {Script_None}, {Script_None}, {Script_None},
/*10*/
{Script_None}, {Script_None}, {Script_None}, {Script_None},
/*14*/
{Script_None}, {Script_None}, {Script_None}, {Script_SRelative, END},
/*18*/
{Script_SRelative, END}, {Script_SRelative, END}, {Script_SVariable, END}, {Script_None},
/*1C*/
{Script_SVariable, END}, {Script_None}, {Script_None}, {Script_Variable, END},
/*20*/
{Script_SRelative, Script_Byte, END}, {Script_Variable, Script_Byte, END}, {Script_Variable, Script_Byte, END}, {Script_Variable, Script_SVariable, Script_Byte, END},
/*24 (24=ret)*/
{Script_End}, {Script_Byte, END}, {Script_Invalid}, {Script_Invalid},
/*28*/
{Script_Variable, END}, {Script_Invalid}, {Script_Byte, END}, {Script_Variable, Script_Byte, END},
/*2C*/
{Script_SVariable, END}, {Script_SVariable, Script_Variable, END}, {Script_None}, {Script_Invalid},
/*30*/
{Script_None}, {Script_Property, END}, {Script_Property, END}, {Script_Property, END},
/*34*/
{Script_Property, END}, {Script_Property, END}, {Script_Property, END}, {Script_Property, END},
/*38*/
{Script_Property, END}, {Script_SRelative, END}, {Script_SRelative, END}, {Script_None},
/*3C*/
{Script_None}, {Script_None}, {Script_None}, {Script_Word},
/*40-4F*/
{Script_Global, END}, {Script_Local, END}, {Script_Temp, END}, {Script_Param, END},
{Script_Global, END}, {Script_Local, END}, {Script_Temp, END}, {Script_Param, END},
{Script_Global, END}, {Script_Local, END}, {Script_Temp, END}, {Script_Param, END},
{Script_Global, END}, {Script_Local, END}, {Script_Temp, END}, {Script_Param, END},
/*50-5F*/
{Script_Global, END}, {Script_Local, END}, {Script_Temp, END}, {Script_Param, END},
{Script_Global, END}, {Script_Local, END}, {Script_Temp, END}, {Script_Param, END},
{Script_Global, END}, {Script_Local, END}, {Script_Temp, END}, {Script_Param, END},
{Script_Global, END}, {Script_Local, END}, {Script_Temp, END}, {Script_Param, END},
/*60-6F*/
{Script_Global, END}, {Script_Local, END}, {Script_Temp, END}, {Script_Param, END},
{Script_Global, END}, {Script_Local, END}, {Script_Temp, END}, {Script_Param, END},
{Script_Global, END}, {Script_Local, END}, {Script_Temp, END}, {Script_Param, END},
{Script_Global, END}, {Script_Local, END}, {Script_Temp, END}, {Script_Param, END},
/*70-7F*/
{Script_Global, END}, {Script_Local, END}, {Script_Temp, END}, {Script_Param, END},
{Script_Global, END}, {Script_Local, END}, {Script_Temp, END}, {Script_Param, END},
{Script_Global, END}, {Script_Local, END}, {Script_Temp, END}, {Script_Param, END},
{Script_Global, END}, {Script_Local, END}, {Script_Temp, END}, {Script_Param, END}
};
#undef END
// TODO: script_adjust_opcode_formats should probably be part of the
// constructor (?) of a VirtualMachine or a ScriptManager class.
void script_adjust_opcode_formats() {
if (g_sci->_features->detectLofsType() != SCI_VERSION_0_EARLY) {
g_opcode_formats[op_lofsa][0] = Script_Offset;
g_opcode_formats[op_lofss][0] = Script_Offset;
}
#ifdef ENABLE_SCI32
// In SCI32, some arguments are now words instead of bytes
if (getSciVersion() >= SCI_VERSION_2) {
g_opcode_formats[op_calle][2] = Script_Word;
g_opcode_formats[op_callk][1] = Script_Word;
g_opcode_formats[op_super][1] = Script_Word;
g_opcode_formats[op_send][0] = Script_Word;
g_opcode_formats[op_self][0] = Script_Word;
g_opcode_formats[op_call][1] = Script_Word;
g_opcode_formats[op_callb][1] = Script_Word;
}
#endif
}
/**
* Adds an entry to the top of the execution stack.
*
* @param[in] s The state with which to execute
* @param[in] pc The initial program counter
* @param[in] sp The initial stack pointer
* @param[in] objp Pointer to the beginning of the current object
* @param[in] argc Number of parameters to call with
* @param[in] argp Heap pointer to the first parameter
* @param[in] selector The selector by which it was called or
* NULL_SELECTOR if n.a. For debugging.
* @param[in] exportId The exportId by which it was called or
* -1 if n.a. For debugging.
* @param[in] sendp Pointer to the object which the message was
* sent to. Equal to objp for anything but super.
* @param[in] origin Number of the execution stack element this
* entry was created by (usually the current TOS
* number, except for multiple sends).
* @param[in] local_segment The segment to use for local variables,
* or SCI_XS_CALLEE_LOCALS to use obj's segment.
* @return A pointer to the new exec stack TOS entry
*/
static ExecStack *add_exec_stack_entry(Common::List<ExecStack> &execStack, reg_t pc, StackPtr sp,
reg_t objp, int argc, StackPtr argp, Selector selector, int exportId, int localCallOffset,
reg_t sendp, int origin, SegmentId local_segment);
/**
* Adds one varselector access to the execution stack.
* This function is called from send_selector only.
* @param[in] s The EngineState to use
* @param[in] objp Pointer to the object owning the selector
* @param[in] argc 1 for writing, 0 for reading
* @param[in] argp Pointer to the address of the data to write -2
* @param[in] selector Selector name
* @param[in] address Heap address of the selector
* @param[in] origin Stack frame which the access originated from
* @return Pointer to the new exec-TOS element
*/
static ExecStack *add_exec_stack_varselector(Common::List<ExecStack> &execStack, reg_t objp, int argc,
StackPtr argp, Selector selector, const ObjVarRef& address,
int origin);
// validation functionality
static reg_t &validate_property(Object *obj, int index) {
// A static dummy reg_t, which we return if obj or index turn out to be
// invalid. Note that we cannot just return NULL_REG, because client code
// may modify the value of the returned reg_t.
static reg_t dummyReg = NULL_REG;
// FIXME/TODO: Where does this occur? Returning a dummy reg here could lead
// to all sorts of issues! Turned it into an error for now...
// If this occurs, it means there's probably something wrong with the garbage
// collector, so don't hide it with fake return values
if (!obj) {
error("validate_property: Sending to disposed object");
//return dummyReg;
}
if (index < 0 || (uint)index >= obj->getVarCount()) {
// This is same way sierra does it and there are some games, that contain such scripts like
// iceman script 998 (fred::canBeHere, executed right at the start)
debugC(2, kDebugLevelVM, "[VM] Invalid property #%d (out of [0..%d]) requested!",
index, obj->getVarCount());
return dummyReg;
}
return obj->getVariableRef(index);
}
static StackPtr validate_stack_addr(EngineState *s, StackPtr sp) {
if (sp >= s->stack_base && sp < s->stack_top)
return sp;
error("[VM] Stack index %d out of valid range [%d..%d]",
(int)(sp - s->stack_base), 0, (int)(s->stack_top - s->stack_base - 1));
return 0;
}
static int validate_arithmetic(reg_t reg) {
if (reg.segment) {
// The results of this are likely unpredictable... It most likely means that a kernel function is returning something wrong.
// If such an error occurs, we usually need to find the last kernel function called and check its return value. Check
// callKernelFunc() below
error("[VM] Attempt to read arithmetic value from non-zero segment [%04x]. Address: %04x:%04x", reg.segment, PRINT_REG(reg));
return 0;
}
return reg.offset;
}
static int signed_validate_arithmetic(reg_t reg) {
return (int16)validate_arithmetic(reg);
}
static bool validate_variable(reg_t *r, reg_t *stack_base, int type, int max, int index) {
const char *names[4] = {"global", "local", "temp", "param"};
if (index < 0 || index >= max) {
Common::String txt = Common::String::printf(
"[VM] Attempt to use invalid %s variable %04x ",
names[type], index);
if (max == 0)
txt += "(variable type invalid)";
else
txt += Common::String::printf("(out of range [%d..%d])", 0, max - 1);
if (type == VAR_PARAM || type == VAR_TEMP) {
int total_offset = r - stack_base;
if (total_offset < 0 || total_offset >= VM_STACK_SIZE) {
// Fatal, as the game is trying to do an OOB access
error("%s. [VM] Access would be outside even of the stack (%d); access denied", txt.c_str(), total_offset);
return false;
} else {
// WORKAROUND: Mixed-Up Mother Goose tries to use an invalid parameter in Event::new().
// Just skip around it here so we don't error out in validate_arithmetic.
if (g_sci->getGameId() == GID_MOTHERGOOSE && getSciVersion() <= SCI_VERSION_1_1 && type == VAR_PARAM && index == 1)
return false;
debugC(2, kDebugLevelVM, "%s", txt.c_str());
debugC(2, kDebugLevelVM, "[VM] Access within stack boundaries; access granted.");
return true;
}
}
return false;
}
return true;
}
struct SciTrackOriginReply {
int scriptNr;
Common::String objectName;
Common::String methodName;
int localCallOffset;
};
static SciWorkaroundSolution trackOriginAndFindWorkaround(int index, const SciWorkaroundEntry *workaroundList, SciTrackOriginReply *trackOrigin) {
EngineState *state = g_sci->getEngineState();
ExecStack *lastCall = state->xs;
Script *local_script = state->_segMan->getScriptIfLoaded(lastCall->local_segment);
int curScriptNr = local_script->getScriptNumber();
if (lastCall->debugLocalCallOffset != -1) {
// if lastcall was actually a local call search back for a real call
Common::List<ExecStack>::iterator callIterator = state->_executionStack.end();
while (callIterator != state->_executionStack.begin()) {
callIterator--;
ExecStack loopCall = *callIterator;
if ((loopCall.debugSelector != -1) || (loopCall.debugExportId != -1)) {
lastCall->debugSelector = loopCall.debugSelector;
lastCall->debugExportId = loopCall.debugExportId;
break;
}
}
}
Common::String curObjectName = state->_segMan->getObjectName(lastCall->sendp);
Common::String curMethodName;
const SciGameId gameId = g_sci->getGameId();
const int curRoomNumber = state->currentRoomNumber();
if (lastCall->type == EXEC_STACK_TYPE_CALL) {
if (lastCall->debugSelector != -1) {
curMethodName = g_sci->getKernel()->getSelectorName(lastCall->debugSelector);
} else if (lastCall->debugExportId != -1) {
curObjectName = "";
curMethodName = curMethodName.printf("export %d", lastCall->debugExportId);
}
}
if (workaroundList) {
// Search if there is a workaround for this one
const SciWorkaroundEntry *workaround;
int16 inheritanceLevel = 0;
Common::String searchObjectName = curObjectName;
reg_t searchObject = lastCall->sendp;
do {
workaround = workaroundList;
while (workaround->objectName) {
if (workaround->gameId == gameId && workaround->scriptNr == curScriptNr
&& ((workaround->roomNr == -1) || (workaround->roomNr == curRoomNumber))
&& ((workaround->inheritanceLevel == -1) || (workaround->inheritanceLevel == inheritanceLevel))
&& (workaround->objectName == searchObjectName)
&& workaround->methodName == curMethodName && workaround->localCallOffset == lastCall->debugLocalCallOffset
&& ((workaround->index == -1) || (workaround->index == index))) {
// Workaround found
return workaround->newValue;
}
workaround++;
}
// Go back to the parent
inheritanceLevel++;
searchObject = state->_segMan->getObject(searchObject)->getSuperClassSelector();
if (!searchObject.isNull())
searchObjectName = state->_segMan->getObjectName(searchObject);
} while (!searchObject.isNull()); // no parent left?
}
// give caller origin data
trackOrigin->objectName = curObjectName;
trackOrigin->methodName = curMethodName;
trackOrigin->scriptNr = curScriptNr;
trackOrigin->localCallOffset = lastCall->debugLocalCallOffset;
SciWorkaroundSolution noneFound;
noneFound.type = WORKAROUND_NONE;
noneFound.value = 0;
return noneFound;
}
static bool validate_unsignedInteger(reg_t reg, uint16 &integer) {
if (reg.segment)
return false;
integer = reg.offset;
return true;
}
static bool validate_signedInteger(reg_t reg, int16 &integer) {
if (reg.segment)
return false;
integer = (int16)reg.offset;
return true;
}
// gameID, room,script,lvl, object-name, method-name, call,index, workaround
static const SciWorkaroundEntry opcodeDivWorkarounds[] = {
{ GID_QFG1VGA, 301, 928, 0, "Blink", "init", -1, 0, { WORKAROUND_FAKE, 0 } }, // when entering inn, gets called with 1 parameter, but 2nd parameter is used for div which happens to be an object
SCI_WORKAROUNDENTRY_TERMINATOR
};
// gameID, room,script,lvl, object-name, method-name, call, index, workaround
static const SciWorkaroundEntry opcodeDptoaWorkarounds[] = {
{ GID_LSL6, 360, 938, 0, "ROsc", "cycleDone", -1, 0, { WORKAROUND_FAKE, 1 } }, // when looking through tile in the shower room initial cycles get set to an object instead of 2, we fix this by setting 1 after decrease
SCI_WORKAROUNDENTRY_TERMINATOR
};
extern const char *opcodeNames[]; // from scriptdebug.cpp
static reg_t arithmetic_lookForWorkaround(const byte opcode, const SciWorkaroundEntry *workaroundList, reg_t value1, reg_t value2) {
SciTrackOriginReply originReply;
SciWorkaroundSolution solution = trackOriginAndFindWorkaround(0, workaroundList, &originReply);
if (solution.type == WORKAROUND_NONE)
error("%s on non-integer (%04x:%04x, %04x:%04x) from method %s::%s (script %d, localCall %x)", opcodeNames[opcode], PRINT_REG(value1), PRINT_REG(value2), originReply.objectName.c_str(), originReply.methodName.c_str(), originReply.scriptNr, originReply.localCallOffset);
assert(solution.type == WORKAROUND_FAKE);
return make_reg(0, solution.value);
}
#define FAKE WORKAROUND_FAKE
// gameID, room,script,lvl, object-name, method-name, call,index, workaround
static const SciWorkaroundEntry uninitializedReadWorkarounds[] = {
{ GID_CNICK_KQ, 200, 0, 1, "Character", "<noname 446>", -1, 504, { FAKE, 0 } }, // checkers, like in hoyle 3
{ GID_CNICK_KQ, 200, 0, 1, "Character", "<noname 446>", -1, 505, { FAKE, 0 } }, // checkers, like in hoyle 3
{ GID_CNICK_KQ, -1, 700, 0, "gcWindow", "<noname 183>", -1, -1, { FAKE, 0 } }, // when entering control menu, like in hoyle 3
{ GID_CNICK_LONGBOW, 0, 0, 0, "RH Budget", "<noname 110>", -1, 1, { FAKE, 0 } }, // when starting the game
{ GID_FREDDYPHARKAS, -1, 24, 0, "gcWin", "open", -1, 5, { FAKE, 0xf } }, // is used as priority for game menu
{ GID_FREDDYPHARKAS, -1, 31, 0, "quitWin", "open", -1, 5, { FAKE, 0xf } }, // is used as priority for game menu
{ GID_GK1, -1, 64950, 1, "Feature", "handleEvent", -1, 0, { FAKE, 0 } }, // sometimes when walk-clicking
{ GID_GK2, 34, 11, 0, "", "export 10", -1, 3, { FAKE, 0 } }, // called when the game starts
{ GID_HOYLE1, 4, 104, 0, "GinRummyCardList", "calcRuns", -1, 4, { FAKE, 0 } }, // Gin Rummy / right when the game starts
{ GID_HOYLE1, 5, 204, 0, "tableau", "checkRuns", -1, 2, { FAKE, 0 } }, // Cribbage / during the game
{ GID_HOYLE3, 200, 0, 1, "Character", "say", -1, 504, { FAKE, 0 } }, // when starting checkers, first time a character says something
{ GID_HOYLE3, 200, 0, 1, "Character", "say", -1, 505, { FAKE, 0 } }, // when starting checkers, first time a character says something
{ GID_HOYLE3, -1, 700, 0, "gcWindow", "open", -1, -1, { FAKE, 0 } }, // when entering control menu
{ GID_ISLANDBRAIN, 140, 140, 0, "piece", "init", -1, 3, { FAKE, 1 } }, // first puzzle right at the start, some initialization variable. bnt is done on it, and it should be non-0
{ GID_ISLANDBRAIN, 200, 268, 0, "anElement", "select", -1, 0, { FAKE, 0 } }, // elements puzzle, gets used before super TextIcon
{ GID_JONES, 1, 232, 0, "weekendText", "draw", 0x3d3, 0, { FAKE, 0 } }, // jones/cd only - gets called during the game
{ GID_JONES, 764, 255, 0, "", "export 0", -1, 13, { FAKE, 0 } }, // jones/ega&vga only - called when the game starts
{ GID_JONES, 764, 255, 0, "", "export 0", -1, 14, { FAKE, 0 } }, // jones/ega&vga only - called when the game starts
{ GID_KQ5, 90, 0, 0, "", "export 29", -1, 3, { FAKE, 0 } }, // called when playing harp for the harpies, is used for kDoAudio
{ GID_KQ5, 25, 25, 0, "rm025", "doit", -1, 0, { FAKE, 0 } }, // inside witch forest, when going to the room where the walking rock is
{ GID_KQ6, 30, 30, 0, "rats", "changeState", -1, 0, { FAKE, 0 } }, // rats in the catacombs
{ GID_KQ6, 500, 500, 0, "rm500", "init", -1, 0, { FAKE, 0 } }, // going to island of the beast
{ GID_KQ6, 520, 520, 0, "rm520", "init", -1, 0, { FAKE, 0 } }, // going to boiling water trap on beast isle
{ GID_KQ6, -1, 903, 0, "controlWin", "open", -1, 4, { FAKE, 0 } }, // when opening the controls window (save, load etc)
{ GID_LAURABOW2, -1, 24, 0, "gcWin", "open", -1, 5, { FAKE, 0xf } }, // is used as priority for game menu
{ GID_LSL1, 250, 250, 0, "increase", "handleEvent", -1, 2, { FAKE, 0 } }, // casino, playing game, increasing bet
{ GID_LSL1, 720, 720, 0, "rm720", "init", -1, 0, { FAKE, 0 } }, // age check room
{ GID_LSL3, 340, 340, 0, "ComicScript", "changeState", -1, 200, { FAKE, 0 } }, // right after entering the 3 ethnic groups inside comedy club
{ GID_LSL3, 340, 340, 0, "ComicScript", "changeState", -1, 201, { FAKE, 0 } }, // see above
{ GID_LSL3, 340, 340, 0, "ComicScript", "changeState", -1, 202, { FAKE, 0 } }, // see above
{ GID_LSL3, 340, 340, 0, "ComicScript", "changeState", -1, 203, { FAKE, 0 } }, // see above
{ GID_LSL3, -1, 997, 0, "TheMenuBar", "handleEvent", -1, 1, { FAKE, 0xf } }, // when setting volume the first time, this temp is used to set volume on entry (normally it would have been initialized to 's')
{ GID_LSL6, -1, 85, 0, "washcloth", "doVerb", -1, 0, { FAKE, 0 } }, // washcloth in inventory
{ GID_LSL6, -1, 928, -1, "Narrator", "startText", -1, 0, { FAKE, 0 } }, // used by various objects that are even translated in foreign versions, that's why we use the base-class
{ GID_LSL6HIRES, 0, 85, 0, "LL6Inv", "init", -1, 0, { FAKE, 0 } }, // on startup
{ GID_QFG2, -1, 71, 0, "theInvSheet", "doit", -1, 1, { FAKE, 0 } }, // accessing the inventory
{ GID_SQ1, -1, 703, 0, "", "export 1", -1, 0, { FAKE, 0 } }, // sub that's called from several objects while on sarien battle cruiser
{ GID_SQ1, -1, 703, 0, "firePulsar", "changeState", 0x18a, 0, { FAKE, 0 } }, // export 1, but called locally (when shooting at aliens)
{ GID_SQ4, -1, 928, 0, "Narrator", "startText", -1, 1000, { FAKE, 1 } }, // sq4cd: method returns this to the caller
{ GID_SQ6, 100, 0, 0, "SQ6", "init", -1, 2, { FAKE, 0 } }, // called when the game starts
{ GID_SQ6, 100, 64950, 0, "View", "handleEvent", -1, 0, { FAKE, 0 } }, // called when pressing "Start game" in the main menu
{ GID_SQ6, -1, 64964, 0, "DPath", "init", -1, 1, { FAKE, 0 } }, // during the game
SCI_WORKAROUNDENTRY_TERMINATOR
};
static reg_t validate_read_var(reg_t *r, reg_t *stack_base, int type, int max, int index, reg_t default_value) {
if (validate_variable(r, stack_base, type, max, index)) {
if (r[index].segment == 0xffff) {
switch (type) {
case VAR_TEMP: {
// Uninitialized read on a temp
// We need to find correct replacements for each situation manually
SciTrackOriginReply originReply;
SciWorkaroundSolution solution = trackOriginAndFindWorkaround(index, uninitializedReadWorkarounds, &originReply);
if (solution.type == WORKAROUND_NONE)
error("Uninitialized read for temp %d from method %s::%s (script %d, localCall %x)", index, originReply.objectName.c_str(), originReply.methodName.c_str(), originReply.scriptNr, originReply.localCallOffset);
assert(solution.type == WORKAROUND_FAKE);
r[index] = make_reg(0, solution.value);
break;
}
case VAR_PARAM:
// Out-of-bounds read for a parameter that goes onto stack and hits an uninitialized temp
// We return 0 currently in that case
warning("Read for a parameter goes out-of-bounds, onto the stack and gets uninitialized temp");
return NULL_REG;
default:
break;
}
}
return r[index];
} else
return default_value;
}
static void validate_write_var(reg_t *r, reg_t *stack_base, int type, int max, int index, reg_t value, SegManager *segMan, Kernel *kernel) {
if (validate_variable(r, stack_base, type, max, index)) {
// WORKAROUND: This code is needed to work around a probable script bug, or a
// limitation of the original SCI engine, which can be observed in LSL5.
//
// In some games, ego walks via the "Grooper" object, in particular its "stopGroop"
// child. In LSL5, during the game, ego is swapped from Larry to Patti. When this
// happens in the original interpreter, the new actor is loaded in the same memory
// location as the old one, therefore the client variable in the stopGroop object
// points to the new actor. This is probably why the reference of the stopGroop
// object is never updated (which is why I mentioned that this is either a script
// bug or some kind of limitation).
//
// In our implementation, each new object is loaded in a different memory location,
// and we can't overwrite the old one. This means that in our implementation,
// whenever ego is changed, we need to update the "client" variable of the
// stopGroop object, which points to ego, to the new ego object. If this is not
// done, ego's movement will not be updated properly, so the result is
// unpredictable (for example in LSL5, Patti spins around instead of walking).
if (index == 0 && type == VAR_GLOBAL && getSciVersion() > SCI_VERSION_0_EARLY) { // global 0 is ego
reg_t stopGroopPos = segMan->findObjectByName("stopGroop");
if (!stopGroopPos.isNull()) { // does the game have a stopGroop object?
// Find the "client" member variable of the stopGroop object, and update it
ObjVarRef varp;
if (lookupSelector(segMan, stopGroopPos, SELECTOR(client), &varp, NULL) == kSelectorVariable) {
reg_t *clientVar = varp.getPointer(segMan);
*clientVar = value;
}
}
}
// If we are writing an uninitialized value into a temp, we remove the uninitialized segment
// this happens at least in sq1/room 44 (slot-machine), because a send is missing parameters, then
// those parameters are taken from uninitialized stack and afterwards they are copied back into temps
// if we don't remove the segment, we would get false-positive uninitialized reads later
if (type == VAR_TEMP && value.segment == 0xffff)
value.segment = 0;
r[index] = value;
}
}
#define READ_VAR(type, index) validate_read_var(s->variables[type], s->stack_base, type, s->variablesMax[type], index, s->r_acc)
#define WRITE_VAR(type, index, value) validate_write_var(s->variables[type], s->stack_base, type, s->variablesMax[type], index, value, s->_segMan, g_sci->getKernel())
#define WRITE_VAR16(type, index, value) WRITE_VAR(type, index, make_reg(0, value));
// Operating on the stack
// 16 bit:
#define PUSH(v) PUSH32(make_reg(0, v))
// 32 bit:
#define PUSH32(a) (*(validate_stack_addr(s, (s->xs->sp)++)) = (a))
#define POP32() (*(validate_stack_addr(s, --(s->xs->sp))))
bool SciEngine::checkExportBreakpoint(uint16 script, uint16 pubfunct) {
if (_debugState._activeBreakpointTypes & BREAK_EXPORT) {
uint32 bpaddress;
bpaddress = (script << 16 | pubfunct);
Common::List<Breakpoint>::const_iterator bp;
for (bp = _debugState._breakpoints.begin(); bp != _debugState._breakpoints.end(); ++bp) {
if (bp->type == BREAK_EXPORT && bp->address == bpaddress) {
_console->DebugPrintf("Break on script %d, export %d\n", script, pubfunct);
_debugState.debugging = true;
_debugState.breakpointWasHit = true;
return true;;
}
}
}
return false;
}
ExecStack *execute_method(EngineState *s, uint16 script, uint16 pubfunct, StackPtr sp, reg_t calling_obj, uint16 argc, StackPtr argp) {
int seg = s->_segMan->getScriptSegment(script);
Script *scr = s->_segMan->getScriptIfLoaded(seg);
if (!scr || scr->isMarkedAsDeleted()) { // Script not present yet?
seg = s->_segMan->instantiateScript(script);
scr = s->_segMan->getScript(seg);
}
const int temp = scr->validateExportFunc(pubfunct);
if (!temp) {
#ifdef ENABLE_SCI32
// HACK: Temporarily switch to a warning in SCI32 games until we can figure out why Torin has
// an invalid exported function.
if (getSciVersion() >= SCI_VERSION_2)
warning("Request for invalid exported function 0x%x of script 0x%x", pubfunct, script);
else
#endif
error("Request for invalid exported function 0x%x of script 0x%x", pubfunct, script);
return NULL;
}
// Check if a breakpoint is set on this method
g_sci->checkExportBreakpoint(script, pubfunct);
return add_exec_stack_entry(s->_executionStack, make_reg(seg, temp), sp, calling_obj, argc, argp, -1, pubfunct, -1, calling_obj, s->_executionStack.size()-1, seg);
}
static void _exec_varselectors(EngineState *s) {
// Executes all varselector read/write ops on the TOS
while (!s->_executionStack.empty() && s->_executionStack.back().type == EXEC_STACK_TYPE_VARSELECTOR) {
ExecStack &xs = s->_executionStack.back();
reg_t *var = xs.getVarPointer(s->_segMan);
if (!var) {
error("Invalid varselector exec stack entry");
} else {
// varselector access?
if (xs.argc) { // write?
*var = xs.variables_argp[1];
} else // No, read
s->r_acc = *var;
}
s->_executionStack.pop_back();
}
}
/** This struct is used to buffer the list of send calls in send_selector() */
struct CallsStruct {
reg_t addr_func;
reg_t varp_objp;
union {
reg_t func;
ObjVarRef var;
} address;
StackPtr argp;
int argc;
Selector selector;
StackPtr sp; /**< Stack pointer */
int type; /**< Same as ExecStack.type */
};
bool SciEngine::checkSelectorBreakpoint(reg_t send_obj, int selector) {
if (_debugState._activeBreakpointTypes & BREAK_SELECTOR) {
char method_name[256];
sprintf(method_name, "%s::%s", _gamestate->_segMan->getObjectName(send_obj), getKernel()->getSelectorName(selector).c_str());
Common::List<Breakpoint>::const_iterator bp;
for (bp = _debugState._breakpoints.begin(); bp != _debugState._breakpoints.end(); ++bp) {
int cmplen = bp->name.size();
if (bp->name.lastChar() != ':')
cmplen = 256;
if (bp->type == BREAK_SELECTOR && !strncmp(bp->name.c_str(), method_name, cmplen)) {
_console->DebugPrintf("Break on %s (in [%04x:%04x])\n", method_name, PRINT_REG(send_obj));
_debugState.debugging = true;
_debugState.breakpointWasHit = true;
return true;
}
}
}
return false;
}
ExecStack *send_selector(EngineState *s, reg_t send_obj, reg_t work_obj, StackPtr sp, int framesize, StackPtr argp) {
// send_obj and work_obj are equal for anything but 'super'
// Returns a pointer to the TOS exec_stack element
assert(s);
reg_t funcp;
int selector;
int argc;
int origin = s->_executionStack.size()-1; // Origin: Used for debugging
bool printSendActions = false;
// We return a pointer to the new active ExecStack
// The selector calls we catch are stored below:
Common::Stack<CallsStruct> sendCalls;
while (framesize > 0) {
selector = validate_arithmetic(*argp++);
argc = validate_arithmetic(*argp);
if (argc > 0x800) { // More arguments than the stack could possibly accomodate for
error("send_selector(): More than 0x800 arguments to function call");
}
// Check if a breakpoint is set on this method
printSendActions = g_sci->checkSelectorBreakpoint(send_obj, selector);
#ifdef VM_DEBUG_SEND
printf("Send to %04x:%04x, selector %04x (%s):", PRINT_REG(send_obj), selector, g_sci->getKernel()->getSelectorName(selector).c_str());
#endif // VM_DEBUG_SEND
ObjVarRef varp;
switch (lookupSelector(s->_segMan, send_obj, selector, &varp, &funcp)) {
case kSelectorNone:
error("Send to invalid selector 0x%x of object at %04x:%04x", 0xffff & selector, PRINT_REG(send_obj));
break;
case kSelectorVariable:
#ifdef VM_DEBUG_SEND
if (argc)
printf("Varselector: Write %04x:%04x\n", PRINT_REG(argp[1]));
else
printf("Varselector: Read\n");
#endif // VM_DEBUG_SEND
// argc == 0: read selector
// argc != 0: write selector
if (printSendActions && !argc) { // read selector
debug("[read selector]\n");
printSendActions = false;
}
if (printSendActions && argc) {
reg_t oldReg = *varp.getPointer(s->_segMan);
reg_t newReg = argp[1];
debug("[write to selector: change %04x:%04x to %04x:%04x]\n", PRINT_REG(oldReg), PRINT_REG(newReg));
printSendActions = false;
}
if (argc > 1) {
// argc can indeed be bigger than 1 in some cases, and it's usually the
// result of a script bug
const char *objectName = s->_segMan->getObjectName(send_obj);
const SciGameId gameId = g_sci->getGameId();
if (gameId == GID_SQ4 && !strcmp(objectName, "Sq4GlobalNarrator") && selector == 606) {
// SQ4 has a script bug in the Sq4GlobalNarrator object when invoking the
// returnVal selector, which doesn't affect gameplay, thus don't diplay it
} else if (gameId == GID_QFG1VGA && !strcmp(objectName, "longSong") && selector == 3) {
// QFG1VGA has a script bug in the longSong object when invoking the
// loop selector, which doesn't affect gameplay, thus don't diplay it
} else if (gameId == GID_CASTLEBRAIN && !strcmp(objectName, "PuzPiece") && selector == 77) {
// Castle of Dr. Brain has a script bug in the PuzPiece object when invoking
// the value selector, which doesn't affect gameplay, thus don't display it
} else {
// Unknown script bug, show it. Usually these aren't fatal.
reg_t oldReg = *varp.getPointer(s->_segMan);
reg_t newReg = argp[1];
const char *selectorName = g_sci->getKernel()->getSelectorName(selector).c_str();
warning("send_selector(): argc = %d while modifying variable selector "
"%x (%s) of object %04x:%04x (%s) from %04x:%04x to %04x:%04x",
argc, selector, selectorName, PRINT_REG(send_obj),
objectName, PRINT_REG(oldReg), PRINT_REG(newReg));
}
}
{
CallsStruct call;
call.address.var = varp; // register the call
call.argp = argp;
call.argc = argc;
call.selector = selector;
call.type = EXEC_STACK_TYPE_VARSELECTOR; // Register as a varselector
sendCalls.push(call);
}
break;
case kSelectorMethod:
#ifdef VM_DEBUG_SEND
printf("Funcselector(");
for (int i = 0; i < argc; i++) {
printf("%04x:%04x", PRINT_REG(argp[i+1]));
if (i + 1 < argc)
printf(", ");
}
printf(") at %04x:%04x\n", PRINT_REG(funcp));
#endif // VM_DEBUG_SEND
if (printSendActions) {
printf("[invoke selector]");
#ifndef VM_DEBUG_SEND
int displaySize = 0;
for (int argNr = 1; argNr <= argc; argNr++) {
if (argNr == 1)
printf(" - ");
reg_t curParam = argp[argNr];
if (curParam.segment) {
printf("[%04x:%04x] ", PRINT_REG(curParam));
displaySize += 12;
} else {
printf("[%04x] ", curParam.offset);
displaySize += 7;
}
if (displaySize > 50) {
if (argNr < argc)
printf("...");
break;
}
}
#endif
printf("\n");
printSendActions = false;
}
{
CallsStruct call;
call.address.func = funcp; // register call
call.argp = argp;
call.argc = argc;
call.selector = selector;
call.type = EXEC_STACK_TYPE_CALL;
call.sp = sp;
sp = CALL_SP_CARRY; // Destroy sp, as it will be carried over
sendCalls.push(call);
}
break;
} // switch (lookupSelector())
framesize -= (2 + argc);
argp += argc + 1;
}
// Iterate over all registered calls in the reverse order. This way, the first call is
// placed on the TOS; as soon as it returns, it will cause the second call to be executed.
while (!sendCalls.empty()) {
CallsStruct call = sendCalls.pop();
if (call.type == EXEC_STACK_TYPE_VARSELECTOR) // Write/read variable?
add_exec_stack_varselector(s->_executionStack, work_obj, call.argc, call.argp,
call.selector, call.address.var, origin);
else
add_exec_stack_entry(s->_executionStack, call.address.func, call.sp, work_obj,
call.argc, call.argp,
call.selector, -1, -1, send_obj, origin, SCI_XS_CALLEE_LOCALS);
}
_exec_varselectors(s);
return s->_executionStack.empty() ? NULL : &(s->_executionStack.back());
}
static ExecStack *add_exec_stack_varselector(Common::List<ExecStack> &execStack, reg_t objp, int argc, StackPtr argp, Selector selector, const ObjVarRef& address, int origin) {
ExecStack *xstack = add_exec_stack_entry(execStack, NULL_REG, 0, objp, argc, argp, selector, -1, -1, objp, origin, SCI_XS_CALLEE_LOCALS);
// Store selector address in sp
xstack->addr.varp = address;
xstack->type = EXEC_STACK_TYPE_VARSELECTOR;
return xstack;
}
static ExecStack *add_exec_stack_entry(Common::List<ExecStack> &execStack, reg_t pc, StackPtr sp, reg_t objp, int argc,
StackPtr argp, Selector selector, int exportId, int localCallOffset, reg_t sendp, int origin, SegmentId _localsSegment) {
// Returns new TOS element for the execution stack
// _localsSegment may be -1 if derived from the called object
//printf("Exec stack: [%d/%d], origin %d, at %p\n", s->execution_stack_pos, s->_executionStack.size(), origin, s->execution_stack);
ExecStack xstack;
xstack.objp = objp;
if (_localsSegment != SCI_XS_CALLEE_LOCALS)
xstack.local_segment = _localsSegment;
else
xstack.local_segment = pc.segment;
xstack.sendp = sendp;
xstack.addr.pc = pc;
xstack.fp = xstack.sp = sp;
xstack.argc = argc;
xstack.variables_argp = argp; // Parameters
*argp = make_reg(0, argc); // SCI code relies on the zeroeth argument to equal argc
// Additional debug information
xstack.debugSelector = selector;
xstack.debugExportId = exportId;
xstack.debugLocalCallOffset = localCallOffset;
xstack.debugOrigin = origin;
xstack.type = EXEC_STACK_TYPE_CALL; // Normal call
execStack.push_back(xstack);
return &(execStack.back());
}
static reg_t pointer_add(EngineState *s, reg_t base, int offset) {
SegmentObj *mobj = s->_segMan->getSegmentObj(base.segment);
if (!mobj) {
error("[VM] Error: Attempt to add %d to invalid pointer %04x:%04x", offset, PRINT_REG(base));
return NULL_REG;
}
switch (mobj->getType()) {
case SEG_TYPE_LOCALS:
case SEG_TYPE_SCRIPT:
case SEG_TYPE_STACK:
case SEG_TYPE_DYNMEM:
base.offset += offset;
return base;
default:
// FIXME: Changed this to warning, because iceman does this during dancing with girl.
// Investigate why that is so and either fix the underlying issue or implement a more
// specialized workaround!
warning("[VM] Error: Attempt to add %d to pointer %04x:%04x, type %d: Pointer arithmetics of this type unsupported", offset, PRINT_REG(base), mobj->getType());
return NULL_REG;
}
}
static void addKernelCallToExecStack(EngineState *s, int kernelCallNr, int argc, reg_t *argv) {
// Add stack frame to indicate we're executing a callk.
// This is useful in debugger backtraces if this
// kernel function calls a script itself.
ExecStack *xstack;
xstack = add_exec_stack_entry(s->_executionStack, NULL_REG, NULL, NULL_REG, argc, argv - 1, 0, -1, -1, NULL_REG,
s->_executionStack.size()-1, SCI_XS_CALLEE_LOCALS);
xstack->debugSelector = kernelCallNr;
xstack->type = EXEC_STACK_TYPE_KERNEL;
}
static void callKernelFunc(EngineState *s, int kernelCallNr, int argc) {
Kernel *kernel = g_sci->getKernel();
if (kernelCallNr >= (int)kernel->_kernelFuncs.size())
error("Invalid kernel function 0x%x requested", kernelCallNr);
const KernelFunction &kernelCall = kernel->_kernelFuncs[kernelCallNr];
reg_t *argv = s->xs->sp + 1;
if (kernelCall.signature
&& !kernel->signatureMatch(kernelCall.signature, argc, argv)) {
// signature mismatch, check if a workaround is available
SciTrackOriginReply originReply;
SciWorkaroundSolution solution = trackOriginAndFindWorkaround(0, kernelCall.workarounds, &originReply);
switch (solution.type) {
case WORKAROUND_NONE:
kernel->signatureDebug(kernelCall.signature, argc, argv);
error("[VM] k%s[%x]: signature mismatch via method %s::%s (script %d, localCall %x)", kernelCall.name, kernelCallNr, originReply.objectName.c_str(), originReply.methodName.c_str(), originReply.scriptNr, originReply.localCallOffset);
break;
case WORKAROUND_IGNORE: // don't do kernel call, leave acc alone
return;
case WORKAROUND_STILLCALL: // call kernel anyway
break;
case WORKAROUND_FAKE: // don't do kernel call, fake acc
s->r_acc = make_reg(0, solution.value);
return;
default:
error("unknown workaround type");
}
}
// Call kernel function
if (!kernelCall.subFunctionCount) {
addKernelCallToExecStack(s, kernelCallNr, argc, argv);
s->r_acc = kernelCall.function(s, argc, argv);
} else {
// Sub-functions available, check signature and call that one directly
if (argc < 1)
error("[VM] k%s[%x]: no subfunction-id parameter given", kernelCall.name, kernelCallNr);
if (argv[0].segment)
error("[VM] k%s[%x]: given subfunction-id is actually a pointer", kernelCall.name, kernelCallNr);
const uint16 subId = argv[0].toUint16();
// Skip over subfunction-id
argc--;
argv++;
if (subId >= kernelCall.subFunctionCount)
error("[VM] k%s: subfunction-id %d requested, but not available", kernelCall.name, subId);
const KernelSubFunction &kernelSubCall = kernelCall.subFunctions[subId];
if (kernelSubCall.signature && !kernel->signatureMatch(kernelSubCall.signature, argc, argv)) {
// Signature mismatch
SciTrackOriginReply originReply;
SciWorkaroundSolution solution = trackOriginAndFindWorkaround(0, kernelSubCall.workarounds, &originReply);
switch (solution.type) {
case WORKAROUND_NONE: {
kernel->signatureDebug(kernelSubCall.signature, argc, argv);
int callNameLen = strlen(kernelCall.name);
if (strncmp(kernelCall.name, kernelSubCall.name, callNameLen) == 0) {
const char *subCallName = kernelSubCall.name + callNameLen;
error("[VM] k%s(%s): signature mismatch via method %s::%s (script %d, localCall %x)", kernelCall.name, subCallName, originReply.objectName.c_str(), originReply.methodName.c_str(), originReply.scriptNr, originReply.localCallOffset);
}
error("[VM] k%s: signature mismatch via method %s::%s (script %d, localCall %x)", kernelSubCall.name, originReply.objectName.c_str(), originReply.methodName.c_str(), originReply.scriptNr, originReply.localCallOffset);
break;
}
case WORKAROUND_IGNORE: // don't do kernel call, leave acc alone
return;
case WORKAROUND_STILLCALL: // call kernel anyway
break;
case WORKAROUND_FAKE: // don't do kernel call, fake acc
s->r_acc = make_reg(0, solution.value);
return;
default:
error("unknown workaround type");
}
}
if (!kernelSubCall.function)
error("[VM] k%s: subfunction-id %d requested, but not available", kernelCall.name, subId);
addKernelCallToExecStack(s, kernelCallNr, argc, argv);
s->r_acc = kernelSubCall.function(s, argc, argv);
}
#if 0
// Used for debugging
Common::String debugMsg = Common::String::printf("%s [0x%x]", kernelCall.name, kernelCallNr) +
Common::String::printf(", %d params: ", argc) +
" (";
for (int i = 0; i < argc; i++) {
debugMsg += Common::String::printf("%04x:%04x", PRINT_REG(argv[i]));
debugMsg += (i == argc - 1 ? ")" : ", ");
}
debugMsg += ", result: " + Common::String::printf("%04x:%04x", PRINT_REG(s->r_acc));
debug("%s", debugMsg.c_str());
#endif
// Remove callk stack frame again, if there's still an execution stack
if (s->_executionStack.begin() != s->_executionStack.end())
s->_executionStack.pop_back();
}
static void gcCountDown(EngineState *s) {
if (s->gcCountDown-- <= 0) {
s->gcCountDown = s->scriptGCInterval;
run_gc(s);
}
}
int readPMachineInstruction(const byte *src, byte &extOpcode, int16 opparams[4]) {
uint offset = 0;
extOpcode = src[offset++]; // Get "extended" opcode (lower bit has special meaning)
const byte opcode = extOpcode >> 1; // get the actual opcode
memset(opparams, 0, sizeof(opparams));
for (int i = 0; g_opcode_formats[opcode][i]; ++i) {
//printf("Opcode: 0x%x, Opnumber: 0x%x, temp: %d\n", opcode, opcode, temp);
assert(i < 4);
switch (g_opcode_formats[opcode][i]) {
case Script_Byte:
opparams[i] = src[offset++];
break;
case Script_SByte:
opparams[i] = (int8)src[offset++];
break;
case Script_Word:
opparams[i] = READ_SCI11ENDIAN_UINT16(src + offset);
offset += 2;
break;
case Script_SWord:
opparams[i] = (int16)READ_SCI11ENDIAN_UINT16(src + offset);
offset += 2;
break;
case Script_Variable:
case Script_Property:
case Script_Local:
case Script_Temp:
case Script_Global:
case Script_Param:
case Script_Offset:
if (extOpcode & 1) {
opparams[i] = src[offset++];
} else {
opparams[i] = READ_SCI11ENDIAN_UINT16(src + offset);
offset += 2;
}
break;
case Script_SVariable:
case Script_SRelative:
if (extOpcode & 1) {
opparams[i] = (int8)src[offset++];
} else {
opparams[i] = (int16)READ_SCI11ENDIAN_UINT16(src + offset);
offset += 2;
}
break;
case Script_None:
case Script_End:
break;
case Script_Invalid:
default:
error("opcode %02x: Invalid", extOpcode);
}
}
return offset;
}
void run_vm(EngineState *s, bool restoring) {
assert(s);
int temp;
reg_t r_temp; // Temporary register
StackPtr s_temp; // Temporary stack pointer
int16 opparams[4]; // opcode parameters
s->restAdjust = 0; // &rest adjusts the parameter count by this value
// Current execution data:
s->xs = &(s->_executionStack.back());
ExecStack *xs_new = NULL;
Object *obj = s->_segMan->getObject(s->xs->objp);
Script *scr = 0;
Script *local_script = s->_segMan->getScriptIfLoaded(s->xs->local_segment);
int old_executionStackBase = s->executionStackBase;
// Used to detect the stack bottom, for "physical" returns
if (!local_script)
error("run_vm(): program counter gone astray (local_script pointer is null)");
if (!restoring)
s->executionStackBase = s->_executionStack.size() - 1;
s->variablesSegment[VAR_TEMP] = s->variablesSegment[VAR_PARAM] = s->_segMan->findSegmentByType(SEG_TYPE_STACK);
s->variablesBase[VAR_TEMP] = s->variablesBase[VAR_PARAM] = s->stack_base;
s->_executionStackPosChanged = true; // Force initialization
while (1) {
int var_type; // See description below
int var_number;
g_sci->_debugState.old_pc_offset = s->xs->addr.pc.offset;
g_sci->_debugState.old_sp = s->xs->sp;
if (s->abortScriptProcessing != kAbortNone || g_engine->shouldQuit())
return; // Stop processing
if (s->_executionStackPosChanged) {
scr = s->_segMan->getScriptIfLoaded(s->xs->addr.pc.segment);
if (!scr)
error("No script in segment %d", s->xs->addr.pc.segment);
s->xs = &(s->_executionStack.back());
s->_executionStackPosChanged = false;
obj = s->_segMan->getObject(s->xs->objp);
local_script = s->_segMan->getScriptIfLoaded(s->xs->local_segment);
if (!local_script) {
// FIXME: Why does this happen? Is the script not loaded yet at this point?
warning("Could not find local script from segment %x", s->xs->local_segment);
local_script = NULL;
s->variablesBase[VAR_LOCAL] = s->variables[VAR_LOCAL] = NULL;
s->variablesMax[VAR_LOCAL] = 0;
} else {
s->variablesSegment[VAR_LOCAL] = local_script->_localsSegment;
if (local_script->_localsBlock)
s->variablesBase[VAR_LOCAL] = s->variables[VAR_LOCAL] = local_script->_localsBlock->_locals.begin();
else
s->variablesBase[VAR_LOCAL] = s->variables[VAR_LOCAL] = NULL;
if (local_script->_localsBlock)
s->variablesMax[VAR_LOCAL] = local_script->_localsBlock->_locals.size();
else
s->variablesMax[VAR_LOCAL] = 0;
s->variablesMax[VAR_TEMP] = s->xs->sp - s->xs->fp;
s->variablesMax[VAR_PARAM] = s->xs->argc + 1;
}
s->variables[VAR_TEMP] = s->xs->fp;
s->variables[VAR_PARAM] = s->xs->variables_argp;
}
if (s->abortScriptProcessing != kAbortNone || g_engine->shouldQuit())
return; // Stop processing
// Debug if this has been requested:
// TODO: re-implement sci_debug_flags
if (g_sci->_debugState.debugging /* sci_debug_flags*/) {
g_sci->scriptDebug();
g_sci->_debugState.breakpointWasHit = false;
}
Console *con = g_sci->getSciDebugger();
con->onFrame();
if (s->xs->sp < s->xs->fp)
error("run_vm(): stack underflow, sp: %04x:%04x, fp: %04x:%04x",
PRINT_REG(*s->xs->sp), PRINT_REG(*s->xs->fp));
s->variablesMax[VAR_TEMP] = s->xs->sp - s->xs->fp;
if (s->xs->addr.pc.offset >= scr->getBufSize())
error("run_vm(): program counter gone astray, addr: %d, code buffer size: %d",
s->xs->addr.pc.offset, scr->getBufSize());
// Get opcode
byte extOpcode;
s->xs->addr.pc.offset += readPMachineInstruction(scr->getBuf() + s->xs->addr.pc.offset, extOpcode, opparams);
const byte opcode = extOpcode >> 1;
switch (opcode) {
case op_bnot: { // 0x00 (00)
// Binary not
int16 value;
if (validate_signedInteger(s->r_acc, value))
s->r_acc = make_reg(0, 0xffff ^ value);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, s->r_acc, NULL_REG);
break;
}
case op_add: // 0x01 (01)
r_temp = POP32();
// Happens in SQ1, room 28, when throwing the water at Orat
if (s->r_acc.segment == 0xFFFF) {
// WORKAROUND: init uninitialized variable to 0
warning("op_add: attempt to write to uninitialized variable");
s->r_acc = NULL_REG;
}
if (r_temp.segment || s->r_acc.segment) {
reg_t r_ptr = NULL_REG;
int offset;
// Pointer arithmetics!
if (s->r_acc.segment) {
if (r_temp.segment) {
error("Attempt to add two pointers, stack=%04x:%04x and acc=%04x:%04x",
PRINT_REG(r_temp), PRINT_REG(s->r_acc));
offset = 0;
} else {
r_ptr = s->r_acc;
offset = r_temp.offset;
}
} else {
r_ptr = r_temp;
offset = s->r_acc.offset;
}
s->r_acc = pointer_add(s, r_ptr, offset);
} else
s->r_acc = make_reg(0, r_temp.offset + s->r_acc.offset);
break;
case op_sub: // 0x02 (02)
r_temp = POP32();
if (r_temp.segment != s->r_acc.segment) {
reg_t r_ptr = NULL_REG;
int offset;
// Pointer arithmetics!
if (s->r_acc.segment) {
if (r_temp.segment) {
error("Attempt to subtract two pointers, stack=%04x:%04x and acc=%04x:%04x",
PRINT_REG(r_temp), PRINT_REG(s->r_acc));
offset = 0;
} else {
r_ptr = s->r_acc;
offset = r_temp.offset;
}
} else {
r_ptr = r_temp;
offset = s->r_acc.offset;
}
s->r_acc = pointer_add(s, r_ptr, -offset);
} else {
// We can subtract numbers, or pointers with the same segment,
// an operation which will yield a number like in C
s->r_acc = make_reg(0, r_temp.offset - s->r_acc.offset);
}
break;
case op_mul: { // 0x03 (03)
r_temp = POP32();
int16 value1, value2;
if (validate_signedInteger(s->r_acc, value1) && validate_signedInteger(r_temp, value2))
s->r_acc = make_reg(0, value1 * value2);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, s->r_acc, r_temp);
break;
}
case op_div: { // 0x04 (04)
r_temp = POP32();
int16 divisor, dividend;
if (validate_signedInteger(s->r_acc, divisor) && validate_signedInteger(r_temp, dividend))
s->r_acc = make_reg(0, (divisor != 0 ? dividend / divisor : 0));
else
s->r_acc = arithmetic_lookForWorkaround(opcode, opcodeDivWorkarounds, s->r_acc, r_temp);
break;
}
case op_mod: { // 0x05 (05)
r_temp = POP32();
int16 modulo, value;
if (validate_signedInteger(s->r_acc, modulo) && validate_signedInteger(r_temp, value))
s->r_acc = make_reg(0, (modulo != 0 ? value % modulo : 0));
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, s->r_acc, r_temp);
break;
}
case op_shr: { // 0x06 (06)
// Shift right logical
r_temp = POP32();
uint16 value, shiftCount;
if (validate_unsignedInteger(r_temp, value) && validate_unsignedInteger(s->r_acc, shiftCount))
s->r_acc = make_reg(0, value >> shiftCount);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, r_temp, s->r_acc);
break;
}
case op_shl: { // 0x07 (07)
// Shift left logical
r_temp = POP32();
uint16 value, shiftCount;
if (validate_unsignedInteger(r_temp, value) && validate_unsignedInteger(s->r_acc, shiftCount))
s->r_acc = make_reg(0, value << shiftCount);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, r_temp, s->r_acc);
break;
}
case op_xor: { // 0x08 (08)
r_temp = POP32();
uint16 value1, value2;
if (validate_unsignedInteger(r_temp, value1) && validate_unsignedInteger(s->r_acc, value2))
s->r_acc = make_reg(0, value1 ^ value2);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, r_temp, s->r_acc);
break;
}
case op_and: { // 0x09 (09)
r_temp = POP32();
uint16 value1, value2;
if (validate_unsignedInteger(r_temp, value1) && validate_unsignedInteger(s->r_acc, value2))
s->r_acc = make_reg(0, value1 & value2);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, r_temp, s->r_acc);
break;
}
case op_or: { // 0x0a (10)
r_temp = POP32();
uint16 value1, value2;
if (validate_unsignedInteger(r_temp, value1) && validate_unsignedInteger(s->r_acc, value2))
s->r_acc = make_reg(0, value1 | value2);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, r_temp, s->r_acc);
break;
}
case op_neg: { // 0x0b (11)
int16 value;
if (validate_signedInteger(s->r_acc, value))
s->r_acc = make_reg(0, -value);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, s->r_acc, NULL_REG);
break;
}
case op_not: // 0x0c (12)
s->r_acc = make_reg(0, !(s->r_acc.offset || s->r_acc.segment));
// Must allow pointers to be negated, as this is used for checking whether objects exist
break;
case op_eq_: // 0x0d (13)
// ==
s->r_prev = s->r_acc;
r_temp = POP32();
s->r_acc = make_reg(0, r_temp == s->r_acc);
// Explicitly allow pointers to be compared
break;
case op_ne_: // 0x0e (14)
// !=
s->r_prev = s->r_acc;
r_temp = POP32();
s->r_acc = make_reg(0, r_temp != s->r_acc);
// Explicitly allow pointers to be compared
break;
case op_gt_: // 0x0f (15)
// >
s->r_prev = s->r_acc;
r_temp = POP32();
if (r_temp.segment && s->r_acc.segment) {
// Signed pointer comparison. We do unsigned comparison instead, as that is probably what was intended.
if (r_temp.segment != s->r_acc.segment)
warning("[VM] Comparing pointers in different segments (%04x:%04x vs. %04x:%04x)", PRINT_REG(r_temp), PRINT_REG(s->r_acc));
s->r_acc = make_reg(0, (r_temp.segment == s->r_acc.segment) && r_temp.offset > s->r_acc.offset);
} else if (r_temp.segment && !s->r_acc.segment) {
if (s->r_acc.offset >= 1000)
error("[VM] op_gt: comparison between a pointer and number");
// Pseudo-WORKAROUND: Sierra allows any pointer <-> value comparison
// Happens in SQ1, room 28, when throwing the water at Orat
s->r_acc = make_reg(0, 1);
} else {
int16 compare1, compare2;
if (validate_signedInteger(r_temp, compare1) && validate_signedInteger(s->r_acc, compare2))
s->r_acc = make_reg(0, compare1 > compare2);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, r_temp, s->r_acc);
}
break;
case op_ge_: // 0x10 (16)
// >=
s->r_prev = s->r_acc;
r_temp = POP32();
if (r_temp.segment && s->r_acc.segment) {
if (r_temp.segment != s->r_acc.segment)
warning("[VM] Comparing pointers in different segments (%04x:%04x vs. %04x:%04x)", PRINT_REG(r_temp), PRINT_REG(s->r_acc));
s->r_acc = make_reg(0, (r_temp.segment == s->r_acc.segment) && r_temp.offset >= s->r_acc.offset);
} else {
int16 compare1, compare2;
if (validate_signedInteger(r_temp, compare1) && validate_signedInteger(s->r_acc, compare2))
s->r_acc = make_reg(0, compare1 >= compare2);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, r_temp, s->r_acc);
}
break;
case op_lt_: // 0x11 (17)
// <
s->r_prev = s->r_acc;
r_temp = POP32();
if (r_temp.segment && s->r_acc.segment) {
if (r_temp.segment != s->r_acc.segment)
warning("[VM] Comparing pointers in different segments (%04x:%04x vs. %04x:%04x)", PRINT_REG(r_temp), PRINT_REG(s->r_acc));
s->r_acc = make_reg(0, (r_temp.segment == s->r_acc.segment) && r_temp.offset < s->r_acc.offset);
} else if (r_temp.segment && !s->r_acc.segment) {
if (s->r_acc.offset >= 1000)
error("[VM] op_lt: comparison between a pointer and number");
// Pseudo-WORKAROUND: Sierra allows any pointer <-> value comparison
// Happens in SQ1, room 58, when giving id-card to robot
s->r_acc = make_reg(0, 1);
} else {
int16 compare1, compare2;
if (validate_signedInteger(r_temp, compare1) && validate_signedInteger(s->r_acc, compare2))
s->r_acc = make_reg(0, compare1 < compare2);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, r_temp, s->r_acc);
}
break;
case op_le_: // 0x12 (18)
// <=
s->r_prev = s->r_acc;
r_temp = POP32();
if (r_temp.segment && s->r_acc.segment) {
if (r_temp.segment != s->r_acc.segment)
warning("[VM] Comparing pointers in different segments (%04x:%04x vs. %04x:%04x)", PRINT_REG(r_temp), PRINT_REG(s->r_acc));
s->r_acc = make_reg(0, (r_temp.segment == s->r_acc.segment) && r_temp.offset <= s->r_acc.offset);
} else {
int16 compare1, compare2;
if (validate_signedInteger(r_temp, compare1) && validate_signedInteger(s->r_acc, compare2))
s->r_acc = make_reg(0, compare1 <= compare2);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, r_temp, s->r_acc);
}
break;
case op_ugt_: // 0x13 (19)
// > (unsigned)
s->r_prev = s->r_acc;
r_temp = POP32();
// SCI0/SCI1 scripts use this to check whether a
// parameter is a pointer or a far text
// reference. It is used e.g. by the standard library
// Print function to distinguish two ways of calling it:
//
// (Print "foo") // Pointer to a string
// (Print 420 5) // Reference to the fifth message in text resource 420
// It works because in those games, the maximum resource number is 999,
// so any parameter value above that threshold must be a pointer.
if (r_temp.segment && (s->r_acc == make_reg(0, 1000)))
s->r_acc = make_reg(0, 1);
else if (r_temp.segment && s->r_acc.segment)
s->r_acc = make_reg(0, (r_temp.segment == s->r_acc.segment) && r_temp.offset > s->r_acc.offset);
else {
uint16 compare1, compare2;
if (validate_unsignedInteger(r_temp, compare1) && validate_unsignedInteger(s->r_acc, compare2))
s->r_acc = make_reg(0, compare1 > compare2);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, r_temp, s->r_acc);
}
break;
case op_uge_: // 0x14 (20)
// >= (unsigned)
s->r_prev = s->r_acc;
r_temp = POP32();
// See above
if (r_temp.segment && (s->r_acc == make_reg(0, 1000)))
s->r_acc = make_reg(0, 1);
else if (r_temp.segment && s->r_acc.segment)
s->r_acc = make_reg(0, (r_temp.segment == s->r_acc.segment) && r_temp.offset >= s->r_acc.offset);
else {
uint16 compare1, compare2;
if (validate_unsignedInteger(r_temp, compare1) && validate_unsignedInteger(s->r_acc, compare2))
s->r_acc = make_reg(0, compare1 >= compare2);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, r_temp, s->r_acc);
}
break;
case op_ult_: // 0x15 (21)
// < (unsigned)
s->r_prev = s->r_acc;
r_temp = POP32();
// See above
// PQ2 japanese compares pointers to 2000 to find out if its a pointer or a resourceid
if (r_temp.segment && (s->r_acc == make_reg(0, 1000) || (s->r_acc == make_reg(0, 2000))))
s->r_acc = NULL_REG;
else if (r_temp.segment && s->r_acc.segment)
s->r_acc = make_reg(0, (r_temp.segment == s->r_acc.segment) && r_temp.offset < s->r_acc.offset);
else {
uint16 compare1, compare2;
if (validate_unsignedInteger(r_temp, compare1) && validate_unsignedInteger(s->r_acc, compare2))
s->r_acc = make_reg(0, compare1 < compare2);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, r_temp, s->r_acc);
}
break;
case op_ule_: // 0x16 (22)
// <= (unsigned)
s->r_prev = s->r_acc;
r_temp = POP32();
// See above
if (r_temp.segment && (s->r_acc == make_reg(0, 1000)))
s->r_acc = NULL_REG;
else if (r_temp.segment && s->r_acc.segment)
s->r_acc = make_reg(0, (r_temp.segment == s->r_acc.segment) && r_temp.offset <= s->r_acc.offset);
else {
uint16 compare1, compare2;
if (validate_unsignedInteger(r_temp, compare1) && validate_unsignedInteger(s->r_acc, compare2))
s->r_acc = make_reg(0, compare1 <= compare2);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, r_temp, s->r_acc);
}
break;
case op_bt: // 0x17 (23)
// Branch relative if true
if (s->r_acc.offset || s->r_acc.segment)
s->xs->addr.pc.offset += opparams[0];
break;
case op_bnt: // 0x18 (24)
// Branch relative if not true
if (!(s->r_acc.offset || s->r_acc.segment))
s->xs->addr.pc.offset += opparams[0];
break;
case op_jmp: // 0x19 (25)
s->xs->addr.pc.offset += opparams[0];
break;
case op_ldi: // 0x1a (26)
// Load data immediate
s->r_acc = make_reg(0, opparams[0]);
break;
case op_push: // 0x1b (27)
// Push to stack
PUSH32(s->r_acc);
break;
case op_pushi: // 0x1c (28)
// Push immediate
PUSH(opparams[0]);
break;
case op_toss: // 0x1d (29)
// TOS (Top Of Stack) subtract
s->xs->sp--;
break;
case op_dup: // 0x1e (30)
// Duplicate TOD (Top Of Stack) element
r_temp = s->xs->sp[-1];
PUSH32(r_temp);
break;
case op_link: // 0x1f (31)
// We shouldn't initialize temp variables at all
// We put special segment 0xFFFF in there, so that uninitialized reads can get detected
for (int i = 0; i < opparams[0]; i++)
s->xs->sp[i] = make_reg(0xffff, 0);
s->xs->sp += opparams[0];
break;
case op_call: { // 0x20 (32)
// Call a script subroutine
int argc = (opparams[1] >> 1) // Given as offset, but we need count
+ 1 + s->restAdjust;
StackPtr call_base = s->xs->sp - argc;
s->xs->sp[1].offset += s->restAdjust;
uint16 localCallOffset = s->xs->addr.pc.offset + opparams[0];
xs_new = add_exec_stack_entry(s->_executionStack, make_reg(s->xs->addr.pc.segment,
localCallOffset),
s->xs->sp, s->xs->objp,
(validate_arithmetic(*call_base)) + s->restAdjust,
call_base, NULL_SELECTOR, -1, localCallOffset, s->xs->objp,
s->_executionStack.size()-1, s->xs->local_segment);
s->restAdjust = 0; // Used up the &rest adjustment
s->xs->sp = call_base;
s->_executionStackPosChanged = true;
break;
}
case op_callk: { // 0x21 (33)
// Call kernel function
gcCountDown(s);
s->xs->sp -= (opparams[1] >> 1) + 1;
bool oldScriptHeader = (getSciVersion() == SCI_VERSION_0_EARLY);
if (!oldScriptHeader)
s->xs->sp -= s->restAdjust;
int argc = validate_arithmetic(s->xs->sp[0]);
if (!oldScriptHeader)
argc += s->restAdjust;
callKernelFunc(s, opparams[0], argc);
if (!oldScriptHeader)
s->restAdjust = 0;
// Calculate xs again: The kernel function might
// have spawned a new VM
xs_new = &(s->_executionStack.back());
s->_executionStackPosChanged = true;
// If a game is being loaded, stop processing
if (s->abortScriptProcessing != kAbortNone || g_engine->shouldQuit())
return; // Stop processing
break;
}
case op_callb: // 0x22 (34)
// Call base script
temp = ((opparams[1] >> 1) + s->restAdjust + 1);
s_temp = s->xs->sp;
s->xs->sp -= temp;
s->xs->sp[0].offset += s->restAdjust;
xs_new = execute_method(s, 0, opparams[0], s_temp, s->xs->objp,
s->xs->sp[0].offset, s->xs->sp);
s->restAdjust = 0; // Used up the &rest adjustment
if (xs_new) // in case of error, keep old stack
s->_executionStackPosChanged = true;
break;
case op_calle: // 0x23 (35)
// Call external script
temp = ((opparams[2] >> 1) + s->restAdjust + 1);
s_temp = s->xs->sp;
s->xs->sp -= temp;
s->xs->sp[0].offset += s->restAdjust;
xs_new = execute_method(s, opparams[0], opparams[1], s_temp, s->xs->objp,
s->xs->sp[0].offset, s->xs->sp);
s->restAdjust = 0; // Used up the &rest adjustment
if (xs_new) // in case of error, keep old stack
s->_executionStackPosChanged = true;
break;
case op_ret: // 0x24 (36)
// Return from an execution loop started by call, calle, callb, send, self or super
do {
StackPtr old_sp2 = s->xs->sp;
StackPtr old_fp = s->xs->fp;
ExecStack *old_xs = &(s->_executionStack.back());
if ((int)s->_executionStack.size() - 1 == s->executionStackBase) { // Have we reached the base?
s->executionStackBase = old_executionStackBase; // Restore stack base
s->_executionStack.pop_back();
s->_executionStackPosChanged = true;
return; // "Hard" return
}
if (old_xs->type == EXEC_STACK_TYPE_VARSELECTOR) {
// varselector access?
reg_t *var = old_xs->getVarPointer(s->_segMan);
if (old_xs->argc) // write?
*var = old_xs->variables_argp[1];
else // No, read
s->r_acc = *var;
}
// Not reached the base, so let's do a soft return
s->_executionStack.pop_back();
s->_executionStackPosChanged = true;
s->xs = &(s->_executionStack.back());
if (s->xs->sp == CALL_SP_CARRY // Used in sends to 'carry' the stack pointer
|| s->xs->type != EXEC_STACK_TYPE_CALL) {
s->xs->sp = old_sp2;
s->xs->fp = old_fp;
}
} while (s->xs->type == EXEC_STACK_TYPE_VARSELECTOR);
// Iterate over all varselector accesses
s->_executionStackPosChanged = true;
xs_new = s->xs;
break;
case op_send: // 0x25 (37)
// Send for one or more selectors
s_temp = s->xs->sp;
s->xs->sp -= ((opparams[0] >> 1) + s->restAdjust); // Adjust stack
s->xs->sp[1].offset += s->restAdjust;
xs_new = send_selector(s, s->r_acc, s->r_acc, s_temp,
(int)(opparams[0] >> 1) + (uint16)s->restAdjust, s->xs->sp);
if (xs_new && xs_new != s->xs)
s->_executionStackPosChanged = true;
s->restAdjust = 0;
break;
case 0x26: // (38)
case 0x27: // (39)
error("Dummy opcode 0x%x called", opcode); // should never happen
break;
case op_class: // 0x28 (40)
// Get class address
s->r_acc = s->_segMan->getClassAddress((unsigned)opparams[0], SCRIPT_GET_LOCK,
s->xs->addr.pc);
break;
case 0x29: // (41)
error("Dummy opcode 0x%x called", opcode); // should never happen
break;
case op_self: // 0x2a (42)
// Send to self
s_temp = s->xs->sp;
s->xs->sp -= ((opparams[0] >> 1) + s->restAdjust); // Adjust stack
s->xs->sp[1].offset += s->restAdjust;
xs_new = send_selector(s, s->xs->objp, s->xs->objp,
s_temp, (int)(opparams[0] >> 1) + (uint16)s->restAdjust,
s->xs->sp);
if (xs_new && xs_new != s->xs)
s->_executionStackPosChanged = true;
s->restAdjust = 0;
break;
case op_super: // 0x2b (43)
// Send to any class
r_temp = s->_segMan->getClassAddress(opparams[0], SCRIPT_GET_LOAD, s->xs->addr.pc);
if (!r_temp.segment)
error("[VM]: Invalid superclass in object");
else {
s_temp = s->xs->sp;
s->xs->sp -= ((opparams[1] >> 1) + s->restAdjust); // Adjust stack
s->xs->sp[1].offset += s->restAdjust;
xs_new = send_selector(s, r_temp, s->xs->objp, s_temp,
(int)(opparams[1] >> 1) + (uint16)s->restAdjust,
s->xs->sp);
if (xs_new && xs_new != s->xs)
s->_executionStackPosChanged = true;
s->restAdjust = 0;
}
break;
case op_rest: // 0x2c (44)
// Pushes all or part of the parameter variable list on the stack
temp = (uint16) opparams[0]; // First argument
s->restAdjust = MAX<int16>(s->xs->argc - temp + 1, 0); // +1 because temp counts the paramcount while argc doesn't
for (; temp <= s->xs->argc; temp++)
PUSH32(s->xs->variables_argp[temp]);
break;
case op_lea: // 0x2d (45)
// Load Effective Address
temp = (uint16) opparams[0] >> 1;
var_number = temp & 0x03; // Get variable type
// Get variable block offset
r_temp.segment = s->variablesSegment[var_number];
r_temp.offset = s->variables[var_number] - s->variablesBase[var_number];
if (temp & 0x08) // Add accumulator offset if requested
r_temp.offset += signed_validate_arithmetic(s->r_acc);
r_temp.offset += opparams[1]; // Add index
r_temp.offset *= 2; // variables are 16 bit
// That's the immediate address now
s->r_acc = r_temp;
break;
case op_selfID: // 0x2e (46)
// Get 'self' identity
s->r_acc = s->xs->objp;
break;
case 0x2f: // (47)
error("Dummy opcode 0x%x called", opcode); // should never happen
break;
case op_pprev: // 0x30 (48)
// Pushes the value of the prev register, set by the last comparison
// bytecode (eq?, lt?, etc.), on the stack
PUSH32(s->r_prev);
break;
case op_pToa: // 0x31 (49)
// Property To Accumulator
s->r_acc = validate_property(obj, (opparams[0] >> 1));
break;
case op_aTop: // 0x32 (50)
// Accumulator To Property
validate_property(obj, (opparams[0] >> 1)) = s->r_acc;
break;
case op_pTos: // 0x33 (51)
// Property To Stack
PUSH32(validate_property(obj, opparams[0] >> 1));
break;
case op_sTop: // 0x34 (52)
// Stack To Property
validate_property(obj, (opparams[0] >> 1)) = POP32();
break;
case op_ipToa: { // 0x35 (53)
// Increment Property and copy To Accumulator
reg_t &opProperty = validate_property(obj, opparams[0] >> 1);
uint16 valueProperty;
if (validate_unsignedInteger(opProperty, valueProperty))
s->r_acc = make_reg(0, valueProperty + 1);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, NULL, opProperty, NULL_REG);
opProperty = s->r_acc;
break;
}
case op_dpToa: { // 0x36 (54)
// Decrement Property and copy To Accumulator
reg_t &opProperty = validate_property(obj, opparams[0] >> 1);
uint16 valueProperty;
if (validate_unsignedInteger(opProperty, valueProperty))
s->r_acc = make_reg(0, valueProperty - 1);
else
s->r_acc = arithmetic_lookForWorkaround(opcode, opcodeDptoaWorkarounds, opProperty, NULL_REG);
opProperty = s->r_acc;
break;
}
case op_ipTos: { // 0x37 (55)
// Increment Property and push to Stack
reg_t &opProperty = validate_property(obj, opparams[0] >> 1);
uint16 valueProperty;
if (validate_unsignedInteger(opProperty, valueProperty))
valueProperty++;
else
valueProperty = arithmetic_lookForWorkaround(opcode, NULL, opProperty, NULL_REG).offset;
opProperty = make_reg(0, valueProperty);
PUSH(valueProperty);
break;
}
case op_dpTos: { // 0x38 (56)
// Decrement Property and push to Stack
reg_t &opProperty = validate_property(obj, opparams[0] >> 1);
uint16 valueProperty;
if (validate_unsignedInteger(opProperty, valueProperty))
valueProperty--;
else
valueProperty = arithmetic_lookForWorkaround(opcode, NULL, opProperty, NULL_REG).offset;
opProperty = make_reg(0, valueProperty);
PUSH(valueProperty);
break;
}
case op_lofsa: // 0x39 (57)
// Load Offset to Accumulator
s->r_acc.segment = s->xs->addr.pc.segment;
switch (g_sci->_features->detectLofsType()) {
case SCI_VERSION_1_1:
s->r_acc.offset = opparams[0] + local_script->getScriptSize();
break;
case SCI_VERSION_1_MIDDLE:
s->r_acc.offset = opparams[0];
break;
default:
s->r_acc.offset = s->xs->addr.pc.offset + opparams[0];
}
if (s->r_acc.offset >= scr->getBufSize()) {
error("VM: lofsa operation overflowed: %04x:%04x beyond end"
" of script (at %04x)\n", PRINT_REG(s->r_acc), scr->getBufSize());
}
break;
case op_lofss: // 0x3a (58)
// Load Offset to Stack
r_temp.segment = s->xs->addr.pc.segment;
switch (g_sci->_features->detectLofsType()) {
case SCI_VERSION_1_1:
r_temp.offset = opparams[0] + local_script->getScriptSize();
break;
case SCI_VERSION_1_MIDDLE:
r_temp.offset = opparams[0];
break;
default:
r_temp.offset = s->xs->addr.pc.offset + opparams[0];
}
if (r_temp.offset >= scr->getBufSize()) {
error("VM: lofss operation overflowed: %04x:%04x beyond end"
" of script (at %04x)", PRINT_REG(r_temp), scr->getBufSize());
}
PUSH32(r_temp);
break;
case op_push0: // 0x3b (59)
PUSH(0);
break;
case op_push1: // 0x3c (60)
PUSH(1);
break;
case op_push2: // 0x3d (61)
PUSH(2);
break;
case op_pushSelf: // 0x3e (62)
if (!(extOpcode & 1)) {
PUSH32(s->xs->objp);
} else {
// Debug opcode op_file, skip null-terminated string (file name)
const byte *code_buf = scr->getBuf();
while (code_buf[s->xs->addr.pc.offset++]) ;
}
break;
case op_line: // 0x3f (63)
// Debug opcode (line number)
break;
case op_lag: // 0x40 (64)
case op_lal: // 0x41 (65)
case op_lat: // 0x42 (66)
case op_lap: // 0x43 (67)
// Load global, local, temp or param variable into the accumulator
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0];
s->r_acc = READ_VAR(var_type, var_number);
break;
case op_lsg: // 0x44 (68)
case op_lsl: // 0x45 (69)
case op_lst: // 0x46 (70)
case op_lsp: // 0x47 (71)
// Load global, local, temp or param variable into the stack
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0];
PUSH32(READ_VAR(var_type, var_number));
break;
case op_lagi: // 0x48 (72)
case op_lali: // 0x49 (73)
case op_lati: // 0x4a (74)
case op_lapi: // 0x4b (75)
// Load global, local, temp or param variable into the accumulator,
// using the accumulator as an additional index
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0] + signed_validate_arithmetic(s->r_acc);
s->r_acc = READ_VAR(var_type, var_number);
break;
case op_lsgi: // 0x4c (76)
case op_lsli: // 0x4d (77)
case op_lsti: // 0x4e (78)
case op_lspi: // 0x4f (79)
// Load global, local, temp or param variable into the stack,
// using the accumulator as an additional index
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0] + signed_validate_arithmetic(s->r_acc);
PUSH32(READ_VAR(var_type, var_number));
break;
case op_sag: // 0x50 (80)
case op_sal: // 0x51 (81)
case op_sat: // 0x52 (82)
case op_sap: // 0x53 (83)
// Save the accumulator into the global, local, temp or param variable
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0];
WRITE_VAR(var_type, var_number, s->r_acc);
break;
case op_ssg: // 0x54 (84)
case op_ssl: // 0x55 (85)
case op_sst: // 0x56 (86)
case op_ssp: // 0x57 (87)
// Save the stack into the global, local, temp or param variable
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0];
WRITE_VAR(var_type, var_number, POP32());
break;
case op_sagi: // 0x58 (88)
case op_sali: // 0x59 (89)
case op_sati: // 0x5a (90)
case op_sapi: // 0x5b (91)
// Save the accumulator into the global, local, temp or param variable,
// using the accumulator as an additional index
// Special semantics because it wouldn't really make a whole lot
// of sense otherwise, with acc being used for two things
// simultaneously...
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0] + signed_validate_arithmetic(s->r_acc);
s->r_acc = POP32();
WRITE_VAR(var_type, var_number, s->r_acc);
break;
case op_ssgi: // 0x5c (92)
case op_ssli: // 0x5d (93)
case op_ssti: // 0x5e (94)
case op_sspi: // 0x5f (95)
// Save the stack into the global, local, temp or param variable,
// using the accumulator as an additional index
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0] + signed_validate_arithmetic(s->r_acc);
WRITE_VAR(var_type, var_number, POP32());
break;
case op_plusag: // 0x60 (96)
case op_plusal: // 0x61 (97)
case op_plusat: // 0x62 (98)
case op_plusap: // 0x63 (99)
// Increment the global, local, temp or param variable and save it
// to the accumulator
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0];
r_temp = READ_VAR(var_type, var_number);
if (r_temp.segment) {
// Pointer arithmetics!
s->r_acc = pointer_add(s, r_temp, 1);
} else
s->r_acc = make_reg(0, r_temp.offset + 1);
WRITE_VAR(var_type, var_number, s->r_acc);
break;
case op_plussg: // 0x64 (100)
case op_plussl: // 0x65 (101)
case op_plusst: // 0x66 (102)
case op_plussp: // 0x67 (103)
// Increment the global, local, temp or param variable and save it
// to the stack
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0];
r_temp = READ_VAR(var_type, var_number);
if (r_temp.segment) {
// Pointer arithmetics!
r_temp = pointer_add(s, r_temp, 1);
} else
r_temp = make_reg(0, r_temp.offset + 1);
PUSH32(r_temp);
WRITE_VAR(var_type, var_number, r_temp);
break;
case op_plusagi: // 0x68 (104)
case op_plusali: // 0x69 (105)
case op_plusati: // 0x6a (106)
case op_plusapi: // 0x6b (107)
// Increment the global, local, temp or param variable and save it
// to the accumulator, using the accumulator as an additional index
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0] + signed_validate_arithmetic(s->r_acc);
r_temp = READ_VAR(var_type, var_number);
if (r_temp.segment) {
// Pointer arithmetics!
s->r_acc = pointer_add(s, r_temp, 1);
} else
s->r_acc = make_reg(0, r_temp.offset + 1);
WRITE_VAR(var_type, var_number, s->r_acc);
break;
case op_plussgi: // 0x6c (108)
case op_plussli: // 0x6d (109)
case op_plussti: // 0x6e (110)
case op_plusspi: // 0x6f (111)
// Increment the global, local, temp or param variable and save it
// to the stack, using the accumulator as an additional index
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0] + signed_validate_arithmetic(s->r_acc);
r_temp = READ_VAR(var_type, var_number);
if (r_temp.segment) {
// Pointer arithmetics!
r_temp = pointer_add(s, r_temp, 1);
} else
r_temp = make_reg(0, r_temp.offset + 1);
PUSH32(r_temp);
WRITE_VAR(var_type, var_number, r_temp);
break;
case op_minusag: // 0x70 (112)
case op_minusal: // 0x71 (113)
case op_minusat: // 0x72 (114)
case op_minusap: // 0x73 (115)
// Decrement the global, local, temp or param variable and save it
// to the accumulator
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0];
r_temp = READ_VAR(var_type, var_number);
if (r_temp.segment) {
// Pointer arithmetics!
s->r_acc = pointer_add(s, r_temp, -1);
} else
s->r_acc = make_reg(0, r_temp.offset - 1);
WRITE_VAR(var_type, var_number, s->r_acc);
break;
case op_minussg: // 0x74 (116)
case op_minussl: // 0x75 (117)
case op_minusst: // 0x76 (118)
case op_minussp: // 0x77 (119)
// Decrement the global, local, temp or param variable and save it
// to the stack
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0];
r_temp = READ_VAR(var_type, var_number);
if (r_temp.segment) {
// Pointer arithmetics!
r_temp = pointer_add(s, r_temp, -1);
} else
r_temp = make_reg(0, r_temp.offset - 1);
PUSH32(r_temp);
WRITE_VAR(var_type, var_number, r_temp);
break;
case op_minusagi: // 0x78 (120)
case op_minusali: // 0x79 (121)
case op_minusati: // 0x7a (122)
case op_minusapi: // 0x7b (123)
// Decrement the global, local, temp or param variable and save it
// to the accumulator, using the accumulator as an additional index
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0] + signed_validate_arithmetic(s->r_acc);
r_temp = READ_VAR(var_type, var_number);
if (r_temp.segment) {
// Pointer arithmetics!
s->r_acc = pointer_add(s, r_temp, -1);
} else
s->r_acc = make_reg(0, r_temp.offset - 1);
WRITE_VAR(var_type, var_number, s->r_acc);
break;
case op_minussgi: // 0x7c (124)
case op_minussli: // 0x7d (125)
case op_minussti: // 0x7e (126)
case op_minusspi: // 0x7f (127)
// Decrement the global, local, temp or param variable and save it
// to the stack, using the accumulator as an additional index
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0] + signed_validate_arithmetic(s->r_acc);
r_temp = READ_VAR(var_type, var_number);
if (r_temp.segment) {
// Pointer arithmetics!
r_temp = pointer_add(s, r_temp, -1);
} else
r_temp = make_reg(0, r_temp.offset - 1);
PUSH32(r_temp);
WRITE_VAR(var_type, var_number, r_temp);
break;
default:
error("run_vm(): illegal opcode %x", opcode);
} // switch (opcode)
if (s->_executionStackPosChanged) // Force initialization
s->xs = xs_new;
if (s->xs != &(s->_executionStack.back())) {
error("xs is stale (%p vs %p); last command was %02x",
(void *)s->xs, (void *)&(s->_executionStack.back()),
opcode);
}
++s->scriptStepCounter;
}
}
reg_t *ObjVarRef::getPointer(SegManager *segMan) const {
Object *o = segMan->getObject(obj);
return o ? &o->getVariableRef(varindex) : 0;
}
reg_t *ExecStack::getVarPointer(SegManager *segMan) const {
assert(type == EXEC_STACK_TYPE_VARSELECTOR);
return addr.varp.getPointer(segMan);
}
} // End of namespace Sci