956 lines
24 KiB
C
Executable file
956 lines
24 KiB
C
Executable file
/*
|
|
* A V4L2 driver for ar0330_mipi Raw cameras.
|
|
*
|
|
*/
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/videodev2.h>
|
|
#include <linux/clk.h>
|
|
#include <media/v4l2-device.h>
|
|
#include <media/v4l2-chip-ident.h>
|
|
#include <media/v4l2-mediabus.h>
|
|
#include <linux/io.h>
|
|
#include "camera.h"
|
|
#include "sensor_helper.h"
|
|
|
|
MODULE_AUTHOR("Chomoly");
|
|
MODULE_DESCRIPTION("A low-level driver for Aptina ar0330_mipi Raw sensors");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
//for internel driver debug
|
|
#define DEV_DBG_EN 0
|
|
#if(DEV_DBG_EN == 1)
|
|
#define vfe_dev_dbg(x,arg...) printk("[ar0330_mipi Raw]"x,##arg)
|
|
#else
|
|
#define vfe_dev_dbg(x,arg...)
|
|
#endif
|
|
#define vfe_dev_err(x,arg...) printk("[ar0330_mipi Raw]"x,##arg)
|
|
#define vfe_dev_print(x,arg...) printk("[ar0330_mipi Raw]"x,##arg)
|
|
|
|
#define LOG_ERR_RET(x) { \
|
|
int ret; \
|
|
ret = x; \
|
|
if(ret < 0) {\
|
|
vfe_dev_err("error at %s\n",__func__); \
|
|
return ret; \
|
|
} \
|
|
}
|
|
|
|
//define module timing
|
|
#define MCLK (24*1000*1000)
|
|
#define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH
|
|
#define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH
|
|
#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING
|
|
#define V4L2_IDENT_SENSOR 0x0330
|
|
|
|
/*
|
|
*Our nominal (default) frame rate.
|
|
*/
|
|
|
|
#define SENSOR_FRAME_RATE 30
|
|
|
|
|
|
/*
|
|
* The ar0330_mipi i2c address
|
|
*/
|
|
#define I2C_ADDR 0x20
|
|
#define SENSOR_NAME "ar0330_mipi"
|
|
|
|
//static struct delayed_work sensor_s_ae_ratio_work;
|
|
static struct v4l2_subdev *glb_sd;
|
|
|
|
/*
|
|
* Information we maintain about a known sensor.
|
|
*/
|
|
struct sensor_format_struct; /* coming later */
|
|
|
|
struct cfg_array { /* coming later */
|
|
struct regval_list * regs;
|
|
int size;
|
|
};
|
|
|
|
static inline struct sensor_info *to_state(struct v4l2_subdev *sd)
|
|
{
|
|
return container_of(sd, struct sensor_info, sd);
|
|
}
|
|
|
|
|
|
/*
|
|
* The default register settings
|
|
*
|
|
*/
|
|
|
|
static struct regval_list sensor_default_regs[] =
|
|
{
|
|
{0x301a,0x0059}, //Reset Sensor
|
|
{REG_DLY,0x0064},
|
|
{0x31AE,0x0202}, //Output Interface Configured to 2lane MIPI
|
|
{0x301A,0x0058},//Disable Streaming
|
|
{REG_DLY,0x0032},
|
|
{0x3064,0x1802},
|
|
{0x3078,0x0001}, //Marker to say that 'Defaults' have been run
|
|
{0x31e0,0x0003},
|
|
|
|
//Toggle Flash on Each Frame
|
|
{0x3046,0x4038}, // Enable Flash Pin
|
|
{0x3048,0x8480}, // Flash Pulse Length
|
|
{0x31E0,0x0203}, //OTPM V5
|
|
{0x3ED2,0x0146},
|
|
{0x3EDA,0x88BC},
|
|
{0x3EDC,0xAA63},
|
|
{0x305E,0x00A0},
|
|
|
|
//PLL_settings 588Mbps 98Mhz
|
|
//STATE = Master Clock,98000000
|
|
{0x302A,0x0006}, //VT_PIX_CLK_DIV = 6
|
|
{0x302C,0x0002}, //VT_SYS_CLK_DIV = 2
|
|
{0x302E,0x0002}, //PRE_PLL_CLK_DIV = 2
|
|
{0x3030,0x0031}, //PLL_MULTIPLIER = 49
|
|
{0x3036,0x000C}, //OP_PIX_CLK_DIV = 12
|
|
{0x3038,0x0001}, //OP_SYS_CLK_DIV = 1
|
|
{0x31AC,0x0C0C}, //DATA_FORMAT_BITS
|
|
|
|
//MIPI Port Timing continuous mode
|
|
{0x31B0,0x002d},
|
|
{0x31B2,0x0012},
|
|
{0x31B4,0x3b44},
|
|
{0x31B6,0x314d},
|
|
{0x31B8,0x2089},
|
|
{0x31BA,0x0206},
|
|
{0x31BC,0x8005},
|
|
{0x31BE,0x2003},
|
|
|
|
//Timing_settings
|
|
{0x3002, 0x0078}, //Y_ADDR_START = 120
|
|
{0x3004, 0x0006}, //X_ADDR_START = 6
|
|
{0x3006, 0x0587}, //Y_ADDR_END = 1415
|
|
{0x3008, 0x0905}, //X_ADDR_END = 2309
|
|
{0x300A, 0x051c}, //FRAME_LENGTH_LINES = 1308
|
|
{0x300C, 0x04E0}, //LINE_LENGTH_PCK = 1248
|
|
{0x3012, 0x051b}, //COARSE_INTEGRATION_TIME = 1307
|
|
{0x3014, 0x0000}, //FINE_INTEGRATION_TIME = 0
|
|
{0x30A2, 0x0001}, //X_ODD_INC = 1
|
|
{0x30A6, 0x0001}, //Y_ODD_INC = 1
|
|
|
|
{0x3040,0x0000}, //READ_MODE = 0
|
|
{0x3042,0x0000}, //EXTRA_DELAY = 0
|
|
{0x30BA,0x002C}, //DIGITAL_CTRL = 44
|
|
{0x3070,0x0000},
|
|
|
|
{0x301A,0x025C}, //Enable Streaming
|
|
};
|
|
|
|
/*
|
|
* Here we'll try to encapsulate the changes for just the output
|
|
* video format.
|
|
*
|
|
*/
|
|
|
|
static struct regval_list sensor_fmt_raw[] = {
|
|
//{REG_TERM,VAL_TERM},
|
|
};
|
|
|
|
/*
|
|
* Code for dealing with controls.
|
|
* fill with different sensor module
|
|
* different sensor module has different settings here
|
|
* if not support the follow function ,retrun -EINVAL
|
|
*/
|
|
static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value)
|
|
{
|
|
struct sensor_info *info = to_state(sd);
|
|
|
|
*value = info->exp;
|
|
vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp);
|
|
return 0;
|
|
}
|
|
|
|
static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val)
|
|
{
|
|
struct sensor_info *info = to_state(sd);
|
|
|
|
vfe_dev_dbg("sensor_set_exposure = %d\n", exp_val);
|
|
if(exp_val>0xffffff)
|
|
exp_val=0xfffff0;
|
|
if(exp_val<16)
|
|
exp_val=16;
|
|
|
|
exp_val=(exp_val)>>4;//rounding to 1
|
|
|
|
sensor_write(sd, 0x3012,exp_val);//coarse integration time
|
|
|
|
info->exp = exp_val;
|
|
return 0;
|
|
}
|
|
|
|
static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value)
|
|
{
|
|
struct sensor_info *info = to_state(sd);
|
|
|
|
*value = info->gain;
|
|
vfe_dev_dbg("sensor_get_gain = %d\n", info->gain);
|
|
return 0;
|
|
}
|
|
|
|
static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val)
|
|
{
|
|
struct sensor_info *info = to_state(sd);
|
|
unsigned short dig_gain = 0x80; // 1 times digital gain
|
|
|
|
if (gain_val < 16)
|
|
gain_val = 16;
|
|
|
|
if (16<= gain_val*100 && gain_val*100 < (103*16) )
|
|
sensor_write(sd,0x3060,0x0000);
|
|
else if ((103*16) <= gain_val*100 && gain_val*100 < (107*16))
|
|
sensor_write(sd,0x3060,0x0001);
|
|
else if ((107*16) <= gain_val*100 && gain_val*100 < (110*16))
|
|
sensor_write(sd,0x3060,0x0002);
|
|
else if ((110*16) <= gain_val*100 && gain_val*100 < (114*16))
|
|
sensor_write(sd,0x3060,0x0003);
|
|
else if ((114*16) <= gain_val*100 && gain_val*100 < (119*16))
|
|
sensor_write(sd,0x3060,0x0004);
|
|
else if ((119*16) <= gain_val*100 && gain_val*100 < (123*16))
|
|
sensor_write(sd,0x3060,0x0005);
|
|
else if ((123*16) <= gain_val*100 && gain_val*100 < (128*16))
|
|
sensor_write(sd,0x3060,0x0006);
|
|
else if ((128*16) <= gain_val*100 && gain_val*100 < (133*16))
|
|
sensor_write(sd,0x3060,0x0007);
|
|
else if ((133*16) <= gain_val*100 && gain_val*100 < (139*16))
|
|
sensor_write(sd,0x3060,0x0008);
|
|
else if ((139*16) <= gain_val*100 && gain_val*100 < (145*16))
|
|
sensor_write(sd,0x3060,0x0009);
|
|
else if ((145*16) <= gain_val*100 && gain_val*100 < (152*16))
|
|
sensor_write(sd,0x3060,0x000a);
|
|
else if ((152*16) <= gain_val*100 && gain_val*100 < (160*16))
|
|
sensor_write(sd,0x3060,0x000b);
|
|
else if ((160*16) <= gain_val*100 && gain_val*100 < (168*16))
|
|
sensor_write(sd,0x3060,0x000c);
|
|
else if ((168*16) <= gain_val*100 && gain_val*100 < (178*16))
|
|
sensor_write(sd,0x3060,0x000d);
|
|
else if ((178*16) <= gain_val*100 && gain_val*100 < (188*16))
|
|
sensor_write(sd,0x3060,0x000e);
|
|
else if ((188*16) <= gain_val*100 && gain_val*100 < (200*16))
|
|
sensor_write(sd,0x3060,0x000f);
|
|
else if ((200*16) <= gain_val*100 && gain_val*100 < (213*16))
|
|
{
|
|
sensor_write(sd,0x3060,0x0010);
|
|
dig_gain = gain_val*12800/(200*16);
|
|
}
|
|
else if ((213*16) <= gain_val*100 && gain_val*100 < (229*16))
|
|
{
|
|
sensor_write(sd,0x3060,0x0012);
|
|
dig_gain = gain_val*12800/(213*16);
|
|
}
|
|
else if ((229*16) <= gain_val*100 && gain_val*100 < (246*16))
|
|
{
|
|
sensor_write(sd,0x3060,0x0014);
|
|
dig_gain = gain_val*12800/(229*16);
|
|
}
|
|
else if ((246*16) <= gain_val*100 && gain_val*100 < (267*16))
|
|
{
|
|
sensor_write(sd,0x3060,0x0016);
|
|
dig_gain = gain_val*12800/(246*16);
|
|
}
|
|
else if ((267*16) <= gain_val*100 && gain_val*100 < (291*16))
|
|
{
|
|
sensor_write(sd,0x3060,0x0018);
|
|
dig_gain = gain_val*12800/(267*16);
|
|
}
|
|
else if ((291*16) <= gain_val*100 && gain_val*100 < (320*16))
|
|
{
|
|
sensor_write(sd,0x3060,0x001a);
|
|
dig_gain = gain_val*12800/(291*16);
|
|
}
|
|
else if ((320*16) <= gain_val*100 && gain_val*100 < (356*16))
|
|
{
|
|
sensor_write(sd,0x3060,0x001c);
|
|
dig_gain = gain_val*12800/(320*16);
|
|
}
|
|
else if ((356*16) <= gain_val*100 && gain_val*100 < (400*16))
|
|
{
|
|
sensor_write(sd,0x3060,0x001e);
|
|
dig_gain = gain_val*12800/(356*16);
|
|
}
|
|
else if ((400*16) <= gain_val*100 && gain_val*100 < (457*16))
|
|
{
|
|
sensor_write(sd,0x3060,0x0020);
|
|
dig_gain = gain_val*12800/(400*16);
|
|
}
|
|
else if ((457*16) <= gain_val*100 && gain_val*100 < (533*16))
|
|
{
|
|
sensor_write(sd,0x3060,0x0024);
|
|
dig_gain = gain_val*12800/(457*16);
|
|
}
|
|
else if ((533*16) <= gain_val*100 && gain_val*100 < (640*16))
|
|
{
|
|
sensor_write(sd,0x3060,0x0028);
|
|
dig_gain = gain_val*12800/(533*16);
|
|
}
|
|
else if ((640*16) <= gain_val*100 && gain_val*100 < (800*16))
|
|
{
|
|
sensor_write(sd,0x3060,0x002c);
|
|
dig_gain = gain_val*12800/(640*16);
|
|
}
|
|
else if ((800*16) <= gain_val*100 )
|
|
{
|
|
sensor_write(sd,0x3060,0x0030);
|
|
dig_gain = gain_val*12800/(800*16);
|
|
}
|
|
|
|
sensor_write(sd, 0x305e, dig_gain);
|
|
|
|
info->gain = gain_val;
|
|
return 0;
|
|
}
|
|
|
|
static int ar0330_sensor_vts;
|
|
static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain *exp_gain)
|
|
{
|
|
int exp_val, gain_val,shutter,frame_length;
|
|
struct sensor_info *info = to_state(sd);
|
|
exp_val = exp_gain->exp_val;
|
|
gain_val = exp_gain->gain_val;
|
|
if(gain_val<1*16)
|
|
gain_val=16;
|
|
if(gain_val>64*16-1)
|
|
gain_val=64*16-1;
|
|
if(exp_val>0xfffff)
|
|
exp_val=0xfffff;
|
|
|
|
shutter = exp_val/16;
|
|
if(shutter > ar0330_sensor_vts - 4)
|
|
frame_length = shutter + 4;
|
|
else
|
|
frame_length = ar0330_sensor_vts;
|
|
|
|
printk("norm exp_val = %d,gain_val = %d\n",exp_val,gain_val);
|
|
sensor_s_exp(sd,exp_val);
|
|
sensor_s_gain(sd,gain_val);
|
|
info->exp = exp_val;
|
|
info->gain = gain_val;
|
|
return 0;
|
|
}
|
|
static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off)
|
|
{
|
|
int ret ;
|
|
data_type rdtmp;
|
|
ret = sensor_read(sd,0x301a,&rdtmp);
|
|
if (ret!=0)
|
|
return ret;
|
|
if (on_off == 1)
|
|
sensor_write(sd,0x301a,(rdtmp & 0xfff8));
|
|
else
|
|
sensor_write(sd,0x301a,rdtmp );
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Stuff that knows about the sensor.
|
|
*/
|
|
|
|
static int sensor_power(struct v4l2_subdev *sd, int on)
|
|
{
|
|
int ret;
|
|
ret = 0;
|
|
switch(on)
|
|
{
|
|
case CSI_SUBDEV_STBY_ON:
|
|
vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n");
|
|
ret = sensor_s_sw_stby(sd, CSI_GPIO_HIGH);
|
|
if(ret < 0)
|
|
vfe_dev_err("soft stby falied!\n");
|
|
usleep_range(10000,12000);
|
|
cci_lock(sd);
|
|
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
|
|
cci_unlock(sd);
|
|
vfe_set_mclk(sd,OFF);
|
|
break;
|
|
case CSI_SUBDEV_STBY_OFF:
|
|
vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n");
|
|
cci_lock(sd);
|
|
vfe_set_mclk_freq(sd,MCLK);
|
|
vfe_set_mclk(sd,ON);
|
|
usleep_range(10000,12000);
|
|
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
|
|
usleep_range(10000,12000);
|
|
ret = sensor_s_sw_stby(sd, CSI_GPIO_LOW);
|
|
if(ret < 0)
|
|
vfe_dev_err("soft stby off falied!\n");
|
|
cci_unlock(sd);
|
|
break;
|
|
case CSI_SUBDEV_PWR_ON:
|
|
vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n");
|
|
cci_lock(sd);
|
|
vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output
|
|
vfe_gpio_set_status(sd,RESET,1);//set the gpio to output
|
|
vfe_gpio_set_status(sd,POWER_EN,1);//set the gpio to output
|
|
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
|
|
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
|
|
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW);
|
|
usleep_range(1000,1200);
|
|
vfe_set_pmu_channel(sd,AVDD,ON);
|
|
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH);
|
|
vfe_set_pmu_channel(sd,DVDD,ON);
|
|
vfe_set_pmu_channel(sd,AFVDD,ON);
|
|
usleep_range(1000,1200);
|
|
vfe_set_pmu_channel(sd,IOVDD,ON);
|
|
vfe_set_mclk_freq(sd,MCLK);
|
|
vfe_set_mclk(sd,ON);
|
|
usleep_range(10000,12000);
|
|
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
|
|
usleep_range(10000,12000);
|
|
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
|
|
usleep_range(20000,22000);
|
|
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
|
|
cci_lock(sd);
|
|
vfe_set_mclk_freq(sd,MCLK);
|
|
vfe_set_mclk(sd,ON);
|
|
usleep_range(10000,12000);
|
|
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
|
|
usleep_range(10000,12000);
|
|
ret = sensor_s_sw_stby(sd, CSI_GPIO_LOW);
|
|
if(ret < 0)
|
|
vfe_dev_err("soft stby off falied!\n");
|
|
cci_unlock(sd);
|
|
break;
|
|
case CSI_SUBDEV_PWR_OFF:
|
|
vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n");
|
|
cci_lock(sd);
|
|
vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output
|
|
vfe_gpio_set_status(sd,RESET,1);//set the gpio to output
|
|
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
|
|
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
|
|
vfe_set_mclk(sd,OFF);
|
|
vfe_set_pmu_channel(sd,AFVDD,OFF);
|
|
vfe_set_pmu_channel(sd,DVDD,OFF);
|
|
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW);
|
|
vfe_set_pmu_channel(sd,AVDD,OFF);
|
|
vfe_set_pmu_channel(sd,IOVDD,OFF);
|
|
vfe_gpio_set_status(sd,RESET,0);//set the gpio to input
|
|
vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input
|
|
vfe_gpio_set_status(sd,POWER_EN,0);//set the gpio to input
|
|
cci_unlock(sd);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sensor_reset(struct v4l2_subdev *sd, u32 val)
|
|
{
|
|
switch(val)
|
|
{
|
|
case 0:
|
|
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
|
|
usleep_range(10000,12000);
|
|
break;
|
|
case 1:
|
|
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
|
|
usleep_range(10000,12000);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sensor_detect(struct v4l2_subdev *sd)
|
|
{
|
|
unsigned short rdval = 0;
|
|
LOG_ERR_RET(sensor_read(sd, 0x3000, &rdval))
|
|
if(rdval != 0x2604)
|
|
{
|
|
printk(KERN_DEBUG"*********sensor error,read id is %x.\n",rdval);
|
|
return -ENODEV;
|
|
}
|
|
else
|
|
{
|
|
printk(KERN_DEBUG"*********find ar0330_mipi raw data camera sensor now.\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int sensor_init(struct v4l2_subdev *sd, u32 val)
|
|
{
|
|
int ret;
|
|
struct sensor_info *info = to_state(sd);
|
|
|
|
vfe_dev_dbg("sensor_init\n");
|
|
|
|
/*Make sure it is a target sensor*/
|
|
ret = sensor_detect(sd);
|
|
if (ret) {
|
|
vfe_dev_err("chip found is not an target chip.\n");
|
|
return ret;
|
|
}
|
|
|
|
vfe_get_standby_mode(sd,&info->stby_mode);
|
|
|
|
if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \
|
|
&& info->init_first_flag == 0) {
|
|
vfe_dev_print("stby_mode and init_first_flag = 0\n");
|
|
return 0;
|
|
}
|
|
|
|
info->focus_status = 0;
|
|
info->low_speed = 0;
|
|
info->width = HD1080_WIDTH;
|
|
info->height = HD1080_HEIGHT;
|
|
info->hflip = 0;
|
|
info->vflip = 0;
|
|
info->gain = 0;
|
|
|
|
info->tpf.numerator = 1;
|
|
info->tpf.denominator = 30; /* 30fps */
|
|
|
|
ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs));
|
|
if(ret < 0) {
|
|
vfe_dev_err("write sensor_default_regs error\n");
|
|
return ret;
|
|
}
|
|
|
|
if(info->stby_mode == 0)
|
|
info->init_first_flag = 0;
|
|
|
|
info->preview_first_flag = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
|
|
{
|
|
int ret=0;
|
|
struct sensor_info *info = to_state(sd);
|
|
switch(cmd) {
|
|
case GET_CURRENT_WIN_CFG:
|
|
if(info->current_wins != NULL)
|
|
{
|
|
memcpy( arg,
|
|
info->current_wins,
|
|
sizeof(struct sensor_win_size) );
|
|
ret=0;
|
|
}
|
|
else
|
|
{
|
|
vfe_dev_err("empty wins!\n");
|
|
ret=-1;
|
|
}
|
|
break;
|
|
case SET_FPS:
|
|
break;
|
|
case ISP_SET_EXP_GAIN:
|
|
ret = sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* Store information about the video data format.
|
|
*/
|
|
static struct sensor_format_struct {
|
|
__u8 *desc;
|
|
//__u32 pixelformat;
|
|
enum v4l2_mbus_pixelcode mbus_code;
|
|
struct regval_list *regs;
|
|
int regs_size;
|
|
int bpp; /* Bytes per pixel */
|
|
}sensor_formats[] = {
|
|
{
|
|
.desc = "Raw RGB Bayer",
|
|
.mbus_code = V4L2_MBUS_FMT_SGRBG12_12X1,
|
|
.regs = sensor_fmt_raw,
|
|
.regs_size = ARRAY_SIZE(sensor_fmt_raw),
|
|
.bpp = 1
|
|
},
|
|
};
|
|
#define N_FMTS ARRAY_SIZE(sensor_formats)
|
|
|
|
/*
|
|
* Then there is the issue of window sizes. Try to capture the info here.
|
|
*/
|
|
static struct sensor_win_size sensor_win_sizes[] = {
|
|
/* qsxga: 2304*1296 */
|
|
{
|
|
.width = 2304,
|
|
.height = 1296,
|
|
.hoffset = 0,
|
|
.voffset = 0,
|
|
.hts = 1248,
|
|
.vts = 1308,
|
|
.pclk = 49*1000*1000,
|
|
.mipi_bps = (588*1000*1000),
|
|
.fps_fixed = 1,
|
|
.bin_factor = 1,
|
|
.intg_min = 1<<4,
|
|
.intg_max = 1308<<4,//
|
|
.gain_min = 1<<4,
|
|
.gain_max = 64<<4,
|
|
.regs = sensor_default_regs,
|
|
.regs_size = ARRAY_SIZE(sensor_default_regs),
|
|
.set_size = NULL,
|
|
},
|
|
|
|
/* 1080P */
|
|
{
|
|
.width = HD1080_WIDTH,
|
|
.height = HD1080_HEIGHT,
|
|
.hoffset = 0,
|
|
.voffset = 0,
|
|
.hts = 1248,
|
|
.vts = 1308,
|
|
.pclk = 49*1000*1000,
|
|
.mipi_bps = (588*1000*1000)/1,
|
|
.fps_fixed = 1,
|
|
.bin_factor = 1,
|
|
.intg_min = 1<<4,
|
|
.intg_max = 1308<<4,//
|
|
.gain_min = 1<<4,
|
|
.gain_max = 64<<4,
|
|
.width_input = 2304,
|
|
.height_input = 1296,
|
|
.regs = sensor_default_regs,
|
|
.regs_size = ARRAY_SIZE(sensor_default_regs),
|
|
.set_size = NULL,
|
|
},
|
|
};
|
|
|
|
#define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes))
|
|
|
|
static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index,
|
|
enum v4l2_mbus_pixelcode *code)
|
|
{
|
|
if (index >= N_FMTS)
|
|
return -EINVAL;
|
|
|
|
*code = sensor_formats[index].mbus_code;
|
|
return 0;
|
|
}
|
|
|
|
static int sensor_enum_size(struct v4l2_subdev *sd,
|
|
struct v4l2_frmsizeenum *fsize)
|
|
{
|
|
if(fsize->index > N_WIN_SIZES-1)
|
|
return -EINVAL;
|
|
|
|
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
|
|
fsize->discrete.width = sensor_win_sizes[fsize->index].width;
|
|
fsize->discrete.height = sensor_win_sizes[fsize->index].height;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int sensor_try_fmt_internal(struct v4l2_subdev *sd,
|
|
struct v4l2_mbus_framefmt *fmt,
|
|
struct sensor_format_struct **ret_fmt,
|
|
struct sensor_win_size **ret_wsize)
|
|
{
|
|
int index;
|
|
struct sensor_win_size *wsize;
|
|
struct sensor_info *info = to_state(sd);
|
|
|
|
for (index = 0; index < N_FMTS; index++)
|
|
if (sensor_formats[index].mbus_code == fmt->code)
|
|
break;
|
|
|
|
if (index >= N_FMTS)
|
|
return -EINVAL;
|
|
|
|
if (ret_fmt != NULL)
|
|
*ret_fmt = sensor_formats + index;
|
|
|
|
/*
|
|
* Fields: the sensor devices claim to be progressive.
|
|
*/
|
|
fmt->field = V4L2_FIELD_NONE;
|
|
|
|
/*
|
|
* Round requested image size down to the nearest
|
|
* we support, but not below the smallest.
|
|
*/
|
|
for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++)
|
|
if (fmt->width >= wsize->width && fmt->height >= wsize->height)
|
|
break;
|
|
|
|
if (wsize >= sensor_win_sizes + N_WIN_SIZES)
|
|
wsize--; /* Take the smallest one */
|
|
if (ret_wsize != NULL)
|
|
*ret_wsize = wsize;
|
|
/*
|
|
* Note the size we'll actually handle.
|
|
*/
|
|
fmt->width = wsize->width;
|
|
fmt->height = wsize->height;
|
|
info->current_wins = wsize;
|
|
return 0;
|
|
}
|
|
|
|
static int sensor_try_fmt(struct v4l2_subdev *sd,
|
|
struct v4l2_mbus_framefmt *fmt)
|
|
{
|
|
return sensor_try_fmt_internal(sd, fmt, NULL, NULL);
|
|
}
|
|
|
|
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
|
|
struct v4l2_mbus_config *cfg)
|
|
{
|
|
cfg->type = V4L2_MBUS_CSI2;
|
|
cfg->flags = 0|V4L2_MBUS_CSI2_2_LANE|V4L2_MBUS_CSI2_CHANNEL_0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Set a format.
|
|
*/
|
|
static int sensor_s_fmt(struct v4l2_subdev *sd,
|
|
struct v4l2_mbus_framefmt *fmt)
|
|
{
|
|
int ret;
|
|
struct sensor_format_struct *sensor_fmt;
|
|
struct sensor_win_size *wsize;
|
|
struct sensor_info *info = to_state(sd);
|
|
|
|
vfe_dev_dbg("sensor_s_fmt\n");
|
|
|
|
ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if(info->capture_mode == V4L2_MODE_VIDEO)
|
|
{
|
|
//video
|
|
}
|
|
else if(info->capture_mode == V4L2_MODE_IMAGE)
|
|
{
|
|
//image
|
|
}
|
|
|
|
LOG_ERR_RET(sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size))
|
|
ret = 0;
|
|
if (wsize->regs)
|
|
LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size))
|
|
if (wsize->set_size)
|
|
LOG_ERR_RET(wsize->set_size(sd))
|
|
|
|
info->fmt = sensor_fmt;
|
|
info->width = wsize->width;
|
|
info->height = wsize->height;
|
|
ar0330_sensor_vts = wsize->vts;
|
|
// show_regs_array(sd,sensor_1080p_regs);
|
|
|
|
vfe_dev_print("s_fmt set width = %d, height = %d\n",wsize->width,wsize->height);
|
|
if(info->capture_mode == V4L2_MODE_VIDEO)
|
|
{
|
|
//video
|
|
} else {
|
|
//capture image
|
|
}
|
|
//sensor_write_array(sd, sensor_oe_enable_regs, ARRAY_SIZE(sensor_oe_enable_regs));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Implement G/S_PARM. There is a "high quality" mode we could try
|
|
* to do someday; for now, we just do the frame rate tweak.
|
|
*/
|
|
static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
|
|
{
|
|
struct v4l2_captureparm *cp = &parms->parm.capture;
|
|
struct sensor_info *info = to_state(sd);
|
|
|
|
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
|
|
return -EINVAL;
|
|
|
|
memset(cp, 0, sizeof(struct v4l2_captureparm));
|
|
cp->capability = V4L2_CAP_TIMEPERFRAME;
|
|
cp->capturemode = info->capture_mode;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
|
|
{
|
|
struct v4l2_captureparm *cp = &parms->parm.capture;
|
|
struct sensor_info *info = to_state(sd);
|
|
|
|
vfe_dev_dbg("sensor_s_parm\n");
|
|
|
|
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
|
|
return -EINVAL;
|
|
|
|
if (info->tpf.numerator == 0)
|
|
return -EINVAL;
|
|
|
|
info->capture_mode = cp->capturemode;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int sensor_queryctrl(struct v4l2_subdev *sd,
|
|
struct v4l2_queryctrl *qc)
|
|
{
|
|
/* Fill in min, max, step and default value for these controls. */
|
|
/* see include/linux/videodev2.h for details */
|
|
|
|
switch (qc->id) {
|
|
case V4L2_CID_GAIN:
|
|
return v4l2_ctrl_query_fill(qc, 1*16, 16*9-1, 1, 16);
|
|
case V4L2_CID_EXPOSURE:
|
|
return v4l2_ctrl_query_fill(qc, 1, 65536*16, 1, 1);
|
|
case V4L2_CID_FRAME_RATE:
|
|
return v4l2_ctrl_query_fill(qc, 15, 120, 1, 30);
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
|
|
{
|
|
switch (ctrl->id) {
|
|
case V4L2_CID_GAIN:
|
|
return sensor_g_gain(sd, &ctrl->value);
|
|
case V4L2_CID_EXPOSURE:
|
|
return sensor_g_exp(sd, &ctrl->value);
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
|
|
{
|
|
struct v4l2_queryctrl qc;
|
|
int ret;
|
|
|
|
qc.id = ctrl->id;
|
|
ret = sensor_queryctrl(sd, &qc);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) {
|
|
vfe_dev_err("max gain qurery is %d,min gain qurey is %d\n",qc.maximum,qc.minimum);
|
|
return -ERANGE;
|
|
}
|
|
|
|
switch (ctrl->id) {
|
|
case V4L2_CID_GAIN:
|
|
return sensor_s_gain(sd, ctrl->value);
|
|
case V4L2_CID_EXPOSURE:
|
|
return sensor_s_exp(sd, ctrl->value);
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
|
|
static int sensor_g_chip_ident(struct v4l2_subdev *sd,
|
|
struct v4l2_dbg_chip_ident *chip)
|
|
{
|
|
struct i2c_client *client = v4l2_get_subdevdata(sd);
|
|
|
|
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0);
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
static const struct v4l2_subdev_core_ops sensor_core_ops = {
|
|
.g_chip_ident = sensor_g_chip_ident,
|
|
.g_ctrl = sensor_g_ctrl,
|
|
.s_ctrl = sensor_s_ctrl,
|
|
.queryctrl = sensor_queryctrl,
|
|
.reset = sensor_reset,
|
|
.init = sensor_init,
|
|
.s_power = sensor_power,
|
|
.ioctl = sensor_ioctl,
|
|
};
|
|
|
|
static const struct v4l2_subdev_video_ops sensor_video_ops = {
|
|
.enum_mbus_fmt = sensor_enum_fmt,
|
|
.enum_framesizes = sensor_enum_size,
|
|
.try_mbus_fmt = sensor_try_fmt,
|
|
.s_mbus_fmt = sensor_s_fmt,
|
|
.s_parm = sensor_s_parm,
|
|
.g_parm = sensor_g_parm,
|
|
.g_mbus_config = sensor_g_mbus_config,
|
|
};
|
|
|
|
static const struct v4l2_subdev_ops sensor_ops = {
|
|
.core = &sensor_core_ops,
|
|
.video = &sensor_video_ops,
|
|
};
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
static struct cci_driver cci_drv = {
|
|
.name = SENSOR_NAME,
|
|
.addr_width = CCI_BITS_16,
|
|
.data_width = CCI_BITS_16,
|
|
};
|
|
|
|
static int sensor_probe(struct i2c_client *client,
|
|
const struct i2c_device_id *id)
|
|
{
|
|
struct v4l2_subdev *sd;
|
|
struct sensor_info *info;
|
|
info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL);
|
|
if (info == NULL)
|
|
return -ENOMEM;
|
|
sd = &info->sd;
|
|
glb_sd = sd;
|
|
cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv);
|
|
|
|
info->fmt = &sensor_formats[0];
|
|
info->af_first_flag = 1;
|
|
info->init_first_flag = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int sensor_remove(struct i2c_client *client)
|
|
{
|
|
struct v4l2_subdev *sd;
|
|
sd = cci_dev_remove_helper(client, &cci_drv);
|
|
kfree(to_state(sd));
|
|
return 0;
|
|
}
|
|
|
|
static const struct i2c_device_id sensor_id[] = {
|
|
{SENSOR_NAME, 0 },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(i2c, sensor_id);
|
|
|
|
|
|
static struct i2c_driver sensor_driver = {
|
|
.driver = {
|
|
.owner = THIS_MODULE,
|
|
.name = SENSOR_NAME,
|
|
},
|
|
.probe = sensor_probe,
|
|
.remove = sensor_remove,
|
|
.id_table = sensor_id,
|
|
};
|
|
static __init int init_sensor(void)
|
|
{
|
|
return cci_dev_init_helper(&sensor_driver);
|
|
}
|
|
|
|
static __exit void exit_sensor(void)
|
|
{
|
|
cci_dev_exit_helper(&sensor_driver);
|
|
}
|
|
|
|
module_init(init_sensor);
|
|
module_exit(exit_sensor);
|