oleavr-rgl-a500-mini-linux-.../drivers/media/platform/sunxi-vfe/device/ar0330_mipi.c
Ole André Vadla Ravnås 169c65d57e Initial commit
2022-05-07 01:01:45 +02:00

956 lines
24 KiB
C
Executable file

/*
* A V4L2 driver for ar0330_mipi Raw cameras.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/clk.h>
#include <media/v4l2-device.h>
#include <media/v4l2-chip-ident.h>
#include <media/v4l2-mediabus.h>
#include <linux/io.h>
#include "camera.h"
#include "sensor_helper.h"
MODULE_AUTHOR("Chomoly");
MODULE_DESCRIPTION("A low-level driver for Aptina ar0330_mipi Raw sensors");
MODULE_LICENSE("GPL");
//for internel driver debug
#define DEV_DBG_EN 0
#if(DEV_DBG_EN == 1)
#define vfe_dev_dbg(x,arg...) printk("[ar0330_mipi Raw]"x,##arg)
#else
#define vfe_dev_dbg(x,arg...)
#endif
#define vfe_dev_err(x,arg...) printk("[ar0330_mipi Raw]"x,##arg)
#define vfe_dev_print(x,arg...) printk("[ar0330_mipi Raw]"x,##arg)
#define LOG_ERR_RET(x) { \
int ret; \
ret = x; \
if(ret < 0) {\
vfe_dev_err("error at %s\n",__func__); \
return ret; \
} \
}
//define module timing
#define MCLK (24*1000*1000)
#define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH
#define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH
#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING
#define V4L2_IDENT_SENSOR 0x0330
/*
*Our nominal (default) frame rate.
*/
#define SENSOR_FRAME_RATE 30
/*
* The ar0330_mipi i2c address
*/
#define I2C_ADDR 0x20
#define SENSOR_NAME "ar0330_mipi"
//static struct delayed_work sensor_s_ae_ratio_work;
static struct v4l2_subdev *glb_sd;
/*
* Information we maintain about a known sensor.
*/
struct sensor_format_struct; /* coming later */
struct cfg_array { /* coming later */
struct regval_list * regs;
int size;
};
static inline struct sensor_info *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct sensor_info, sd);
}
/*
* The default register settings
*
*/
static struct regval_list sensor_default_regs[] =
{
{0x301a,0x0059}, //Reset Sensor
{REG_DLY,0x0064},
{0x31AE,0x0202}, //Output Interface Configured to 2lane MIPI
{0x301A,0x0058},//Disable Streaming
{REG_DLY,0x0032},
{0x3064,0x1802},
{0x3078,0x0001}, //Marker to say that 'Defaults' have been run
{0x31e0,0x0003},
//Toggle Flash on Each Frame
{0x3046,0x4038}, // Enable Flash Pin
{0x3048,0x8480}, // Flash Pulse Length
{0x31E0,0x0203}, //OTPM V5
{0x3ED2,0x0146},
{0x3EDA,0x88BC},
{0x3EDC,0xAA63},
{0x305E,0x00A0},
//PLL_settings 588Mbps 98Mhz
//STATE = Master Clock,98000000
{0x302A,0x0006}, //VT_PIX_CLK_DIV = 6
{0x302C,0x0002}, //VT_SYS_CLK_DIV = 2
{0x302E,0x0002}, //PRE_PLL_CLK_DIV = 2
{0x3030,0x0031}, //PLL_MULTIPLIER = 49
{0x3036,0x000C}, //OP_PIX_CLK_DIV = 12
{0x3038,0x0001}, //OP_SYS_CLK_DIV = 1
{0x31AC,0x0C0C}, //DATA_FORMAT_BITS
//MIPI Port Timing continuous mode
{0x31B0,0x002d},
{0x31B2,0x0012},
{0x31B4,0x3b44},
{0x31B6,0x314d},
{0x31B8,0x2089},
{0x31BA,0x0206},
{0x31BC,0x8005},
{0x31BE,0x2003},
//Timing_settings
{0x3002, 0x0078}, //Y_ADDR_START = 120
{0x3004, 0x0006}, //X_ADDR_START = 6
{0x3006, 0x0587}, //Y_ADDR_END = 1415
{0x3008, 0x0905}, //X_ADDR_END = 2309
{0x300A, 0x051c}, //FRAME_LENGTH_LINES = 1308
{0x300C, 0x04E0}, //LINE_LENGTH_PCK = 1248
{0x3012, 0x051b}, //COARSE_INTEGRATION_TIME = 1307
{0x3014, 0x0000}, //FINE_INTEGRATION_TIME = 0
{0x30A2, 0x0001}, //X_ODD_INC = 1
{0x30A6, 0x0001}, //Y_ODD_INC = 1
{0x3040,0x0000}, //READ_MODE = 0
{0x3042,0x0000}, //EXTRA_DELAY = 0
{0x30BA,0x002C}, //DIGITAL_CTRL = 44
{0x3070,0x0000},
{0x301A,0x025C}, //Enable Streaming
};
/*
* Here we'll try to encapsulate the changes for just the output
* video format.
*
*/
static struct regval_list sensor_fmt_raw[] = {
//{REG_TERM,VAL_TERM},
};
/*
* Code for dealing with controls.
* fill with different sensor module
* different sensor module has different settings here
* if not support the follow function ,retrun -EINVAL
*/
static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->exp;
vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp);
return 0;
}
static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val)
{
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_set_exposure = %d\n", exp_val);
if(exp_val>0xffffff)
exp_val=0xfffff0;
if(exp_val<16)
exp_val=16;
exp_val=(exp_val)>>4;//rounding to 1
sensor_write(sd, 0x3012,exp_val);//coarse integration time
info->exp = exp_val;
return 0;
}
static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->gain;
vfe_dev_dbg("sensor_get_gain = %d\n", info->gain);
return 0;
}
static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val)
{
struct sensor_info *info = to_state(sd);
unsigned short dig_gain = 0x80; // 1 times digital gain
if (gain_val < 16)
gain_val = 16;
if (16<= gain_val*100 && gain_val*100 < (103*16) )
sensor_write(sd,0x3060,0x0000);
else if ((103*16) <= gain_val*100 && gain_val*100 < (107*16))
sensor_write(sd,0x3060,0x0001);
else if ((107*16) <= gain_val*100 && gain_val*100 < (110*16))
sensor_write(sd,0x3060,0x0002);
else if ((110*16) <= gain_val*100 && gain_val*100 < (114*16))
sensor_write(sd,0x3060,0x0003);
else if ((114*16) <= gain_val*100 && gain_val*100 < (119*16))
sensor_write(sd,0x3060,0x0004);
else if ((119*16) <= gain_val*100 && gain_val*100 < (123*16))
sensor_write(sd,0x3060,0x0005);
else if ((123*16) <= gain_val*100 && gain_val*100 < (128*16))
sensor_write(sd,0x3060,0x0006);
else if ((128*16) <= gain_val*100 && gain_val*100 < (133*16))
sensor_write(sd,0x3060,0x0007);
else if ((133*16) <= gain_val*100 && gain_val*100 < (139*16))
sensor_write(sd,0x3060,0x0008);
else if ((139*16) <= gain_val*100 && gain_val*100 < (145*16))
sensor_write(sd,0x3060,0x0009);
else if ((145*16) <= gain_val*100 && gain_val*100 < (152*16))
sensor_write(sd,0x3060,0x000a);
else if ((152*16) <= gain_val*100 && gain_val*100 < (160*16))
sensor_write(sd,0x3060,0x000b);
else if ((160*16) <= gain_val*100 && gain_val*100 < (168*16))
sensor_write(sd,0x3060,0x000c);
else if ((168*16) <= gain_val*100 && gain_val*100 < (178*16))
sensor_write(sd,0x3060,0x000d);
else if ((178*16) <= gain_val*100 && gain_val*100 < (188*16))
sensor_write(sd,0x3060,0x000e);
else if ((188*16) <= gain_val*100 && gain_val*100 < (200*16))
sensor_write(sd,0x3060,0x000f);
else if ((200*16) <= gain_val*100 && gain_val*100 < (213*16))
{
sensor_write(sd,0x3060,0x0010);
dig_gain = gain_val*12800/(200*16);
}
else if ((213*16) <= gain_val*100 && gain_val*100 < (229*16))
{
sensor_write(sd,0x3060,0x0012);
dig_gain = gain_val*12800/(213*16);
}
else if ((229*16) <= gain_val*100 && gain_val*100 < (246*16))
{
sensor_write(sd,0x3060,0x0014);
dig_gain = gain_val*12800/(229*16);
}
else if ((246*16) <= gain_val*100 && gain_val*100 < (267*16))
{
sensor_write(sd,0x3060,0x0016);
dig_gain = gain_val*12800/(246*16);
}
else if ((267*16) <= gain_val*100 && gain_val*100 < (291*16))
{
sensor_write(sd,0x3060,0x0018);
dig_gain = gain_val*12800/(267*16);
}
else if ((291*16) <= gain_val*100 && gain_val*100 < (320*16))
{
sensor_write(sd,0x3060,0x001a);
dig_gain = gain_val*12800/(291*16);
}
else if ((320*16) <= gain_val*100 && gain_val*100 < (356*16))
{
sensor_write(sd,0x3060,0x001c);
dig_gain = gain_val*12800/(320*16);
}
else if ((356*16) <= gain_val*100 && gain_val*100 < (400*16))
{
sensor_write(sd,0x3060,0x001e);
dig_gain = gain_val*12800/(356*16);
}
else if ((400*16) <= gain_val*100 && gain_val*100 < (457*16))
{
sensor_write(sd,0x3060,0x0020);
dig_gain = gain_val*12800/(400*16);
}
else if ((457*16) <= gain_val*100 && gain_val*100 < (533*16))
{
sensor_write(sd,0x3060,0x0024);
dig_gain = gain_val*12800/(457*16);
}
else if ((533*16) <= gain_val*100 && gain_val*100 < (640*16))
{
sensor_write(sd,0x3060,0x0028);
dig_gain = gain_val*12800/(533*16);
}
else if ((640*16) <= gain_val*100 && gain_val*100 < (800*16))
{
sensor_write(sd,0x3060,0x002c);
dig_gain = gain_val*12800/(640*16);
}
else if ((800*16) <= gain_val*100 )
{
sensor_write(sd,0x3060,0x0030);
dig_gain = gain_val*12800/(800*16);
}
sensor_write(sd, 0x305e, dig_gain);
info->gain = gain_val;
return 0;
}
static int ar0330_sensor_vts;
static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain *exp_gain)
{
int exp_val, gain_val,shutter,frame_length;
struct sensor_info *info = to_state(sd);
exp_val = exp_gain->exp_val;
gain_val = exp_gain->gain_val;
if(gain_val<1*16)
gain_val=16;
if(gain_val>64*16-1)
gain_val=64*16-1;
if(exp_val>0xfffff)
exp_val=0xfffff;
shutter = exp_val/16;
if(shutter > ar0330_sensor_vts - 4)
frame_length = shutter + 4;
else
frame_length = ar0330_sensor_vts;
printk("norm exp_val = %d,gain_val = %d\n",exp_val,gain_val);
sensor_s_exp(sd,exp_val);
sensor_s_gain(sd,gain_val);
info->exp = exp_val;
info->gain = gain_val;
return 0;
}
static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off)
{
int ret ;
data_type rdtmp;
ret = sensor_read(sd,0x301a,&rdtmp);
if (ret!=0)
return ret;
if (on_off == 1)
sensor_write(sd,0x301a,(rdtmp & 0xfff8));
else
sensor_write(sd,0x301a,rdtmp );
return ret;
}
/*
* Stuff that knows about the sensor.
*/
static int sensor_power(struct v4l2_subdev *sd, int on)
{
int ret;
ret = 0;
switch(on)
{
case CSI_SUBDEV_STBY_ON:
vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n");
ret = sensor_s_sw_stby(sd, CSI_GPIO_HIGH);
if(ret < 0)
vfe_dev_err("soft stby falied!\n");
usleep_range(10000,12000);
cci_lock(sd);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
cci_unlock(sd);
vfe_set_mclk(sd,OFF);
break;
case CSI_SUBDEV_STBY_OFF:
vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n");
cci_lock(sd);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(10000,12000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
usleep_range(10000,12000);
ret = sensor_s_sw_stby(sd, CSI_GPIO_LOW);
if(ret < 0)
vfe_dev_err("soft stby off falied!\n");
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_ON:
vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n");
cci_lock(sd);
vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output
vfe_gpio_set_status(sd,RESET,1);//set the gpio to output
vfe_gpio_set_status(sd,POWER_EN,1);//set the gpio to output
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW);
usleep_range(1000,1200);
vfe_set_pmu_channel(sd,AVDD,ON);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH);
vfe_set_pmu_channel(sd,DVDD,ON);
vfe_set_pmu_channel(sd,AFVDD,ON);
usleep_range(1000,1200);
vfe_set_pmu_channel(sd,IOVDD,ON);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(10000,12000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
usleep_range(10000,12000);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(20000,22000);
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
cci_lock(sd);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(10000,12000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
usleep_range(10000,12000);
ret = sensor_s_sw_stby(sd, CSI_GPIO_LOW);
if(ret < 0)
vfe_dev_err("soft stby off falied!\n");
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_OFF:
vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n");
cci_lock(sd);
vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output
vfe_gpio_set_status(sd,RESET,1);//set the gpio to output
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
vfe_set_mclk(sd,OFF);
vfe_set_pmu_channel(sd,AFVDD,OFF);
vfe_set_pmu_channel(sd,DVDD,OFF);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW);
vfe_set_pmu_channel(sd,AVDD,OFF);
vfe_set_pmu_channel(sd,IOVDD,OFF);
vfe_gpio_set_status(sd,RESET,0);//set the gpio to input
vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input
vfe_gpio_set_status(sd,POWER_EN,0);//set the gpio to input
cci_unlock(sd);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_reset(struct v4l2_subdev *sd, u32 val)
{
switch(val)
{
case 0:
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(10000,12000);
break;
case 1:
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(10000,12000);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_detect(struct v4l2_subdev *sd)
{
unsigned short rdval = 0;
LOG_ERR_RET(sensor_read(sd, 0x3000, &rdval))
if(rdval != 0x2604)
{
printk(KERN_DEBUG"*********sensor error,read id is %x.\n",rdval);
return -ENODEV;
}
else
{
printk(KERN_DEBUG"*********find ar0330_mipi raw data camera sensor now.\n");
return 0;
}
}
static int sensor_init(struct v4l2_subdev *sd, u32 val)
{
int ret;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_init\n");
/*Make sure it is a target sensor*/
ret = sensor_detect(sd);
if (ret) {
vfe_dev_err("chip found is not an target chip.\n");
return ret;
}
vfe_get_standby_mode(sd,&info->stby_mode);
if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \
&& info->init_first_flag == 0) {
vfe_dev_print("stby_mode and init_first_flag = 0\n");
return 0;
}
info->focus_status = 0;
info->low_speed = 0;
info->width = HD1080_WIDTH;
info->height = HD1080_HEIGHT;
info->hflip = 0;
info->vflip = 0;
info->gain = 0;
info->tpf.numerator = 1;
info->tpf.denominator = 30; /* 30fps */
ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs));
if(ret < 0) {
vfe_dev_err("write sensor_default_regs error\n");
return ret;
}
if(info->stby_mode == 0)
info->init_first_flag = 0;
info->preview_first_flag = 1;
return 0;
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
int ret=0;
struct sensor_info *info = to_state(sd);
switch(cmd) {
case GET_CURRENT_WIN_CFG:
if(info->current_wins != NULL)
{
memcpy( arg,
info->current_wins,
sizeof(struct sensor_win_size) );
ret=0;
}
else
{
vfe_dev_err("empty wins!\n");
ret=-1;
}
break;
case SET_FPS:
break;
case ISP_SET_EXP_GAIN:
ret = sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg);
break;
default:
return -EINVAL;
}
return ret;
}
/*
* Store information about the video data format.
*/
static struct sensor_format_struct {
__u8 *desc;
//__u32 pixelformat;
enum v4l2_mbus_pixelcode mbus_code;
struct regval_list *regs;
int regs_size;
int bpp; /* Bytes per pixel */
}sensor_formats[] = {
{
.desc = "Raw RGB Bayer",
.mbus_code = V4L2_MBUS_FMT_SGRBG12_12X1,
.regs = sensor_fmt_raw,
.regs_size = ARRAY_SIZE(sensor_fmt_raw),
.bpp = 1
},
};
#define N_FMTS ARRAY_SIZE(sensor_formats)
/*
* Then there is the issue of window sizes. Try to capture the info here.
*/
static struct sensor_win_size sensor_win_sizes[] = {
/* qsxga: 2304*1296 */
{
.width = 2304,
.height = 1296,
.hoffset = 0,
.voffset = 0,
.hts = 1248,
.vts = 1308,
.pclk = 49*1000*1000,
.mipi_bps = (588*1000*1000),
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 1<<4,
.intg_max = 1308<<4,//
.gain_min = 1<<4,
.gain_max = 64<<4,
.regs = sensor_default_regs,
.regs_size = ARRAY_SIZE(sensor_default_regs),
.set_size = NULL,
},
/* 1080P */
{
.width = HD1080_WIDTH,
.height = HD1080_HEIGHT,
.hoffset = 0,
.voffset = 0,
.hts = 1248,
.vts = 1308,
.pclk = 49*1000*1000,
.mipi_bps = (588*1000*1000)/1,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 1<<4,
.intg_max = 1308<<4,//
.gain_min = 1<<4,
.gain_max = 64<<4,
.width_input = 2304,
.height_input = 1296,
.regs = sensor_default_regs,
.regs_size = ARRAY_SIZE(sensor_default_regs),
.set_size = NULL,
},
};
#define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes))
static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index,
enum v4l2_mbus_pixelcode *code)
{
if (index >= N_FMTS)
return -EINVAL;
*code = sensor_formats[index].mbus_code;
return 0;
}
static int sensor_enum_size(struct v4l2_subdev *sd,
struct v4l2_frmsizeenum *fsize)
{
if(fsize->index > N_WIN_SIZES-1)
return -EINVAL;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = sensor_win_sizes[fsize->index].width;
fsize->discrete.height = sensor_win_sizes[fsize->index].height;
return 0;
}
static int sensor_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
struct sensor_format_struct **ret_fmt,
struct sensor_win_size **ret_wsize)
{
int index;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
for (index = 0; index < N_FMTS; index++)
if (sensor_formats[index].mbus_code == fmt->code)
break;
if (index >= N_FMTS)
return -EINVAL;
if (ret_fmt != NULL)
*ret_fmt = sensor_formats + index;
/*
* Fields: the sensor devices claim to be progressive.
*/
fmt->field = V4L2_FIELD_NONE;
/*
* Round requested image size down to the nearest
* we support, but not below the smallest.
*/
for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++)
if (fmt->width >= wsize->width && fmt->height >= wsize->height)
break;
if (wsize >= sensor_win_sizes + N_WIN_SIZES)
wsize--; /* Take the smallest one */
if (ret_wsize != NULL)
*ret_wsize = wsize;
/*
* Note the size we'll actually handle.
*/
fmt->width = wsize->width;
fmt->height = wsize->height;
info->current_wins = wsize;
return 0;
}
static int sensor_try_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
return sensor_try_fmt_internal(sd, fmt, NULL, NULL);
}
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->type = V4L2_MBUS_CSI2;
cfg->flags = 0|V4L2_MBUS_CSI2_2_LANE|V4L2_MBUS_CSI2_CHANNEL_0;
return 0;
}
/*
* Set a format.
*/
static int sensor_s_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
int ret;
struct sensor_format_struct *sensor_fmt;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_fmt\n");
ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize);
if (ret)
return ret;
if(info->capture_mode == V4L2_MODE_VIDEO)
{
//video
}
else if(info->capture_mode == V4L2_MODE_IMAGE)
{
//image
}
LOG_ERR_RET(sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size))
ret = 0;
if (wsize->regs)
LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size))
if (wsize->set_size)
LOG_ERR_RET(wsize->set_size(sd))
info->fmt = sensor_fmt;
info->width = wsize->width;
info->height = wsize->height;
ar0330_sensor_vts = wsize->vts;
// show_regs_array(sd,sensor_1080p_regs);
vfe_dev_print("s_fmt set width = %d, height = %d\n",wsize->width,wsize->height);
if(info->capture_mode == V4L2_MODE_VIDEO)
{
//video
} else {
//capture image
}
//sensor_write_array(sd, sensor_oe_enable_regs, ARRAY_SIZE(sensor_oe_enable_regs));
return 0;
}
/*
* Implement G/S_PARM. There is a "high quality" mode we could try
* to do someday; for now, we just do the frame rate tweak.
*/
static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
cp->capturemode = info->capture_mode;
return 0;
}
static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_parm\n");
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (info->tpf.numerator == 0)
return -EINVAL;
info->capture_mode = cp->capturemode;
return 0;
}
static int sensor_queryctrl(struct v4l2_subdev *sd,
struct v4l2_queryctrl *qc)
{
/* Fill in min, max, step and default value for these controls. */
/* see include/linux/videodev2.h for details */
switch (qc->id) {
case V4L2_CID_GAIN:
return v4l2_ctrl_query_fill(qc, 1*16, 16*9-1, 1, 16);
case V4L2_CID_EXPOSURE:
return v4l2_ctrl_query_fill(qc, 1, 65536*16, 1, 1);
case V4L2_CID_FRAME_RATE:
return v4l2_ctrl_query_fill(qc, 15, 120, 1, 30);
}
return -EINVAL;
}
static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_g_gain(sd, &ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_g_exp(sd, &ctrl->value);
}
return -EINVAL;
}
static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct v4l2_queryctrl qc;
int ret;
qc.id = ctrl->id;
ret = sensor_queryctrl(sd, &qc);
if (ret < 0) {
return ret;
}
if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) {
vfe_dev_err("max gain qurery is %d,min gain qurey is %d\n",qc.maximum,qc.minimum);
return -ERANGE;
}
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_s_gain(sd, ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_s_exp(sd, ctrl->value);
}
return -EINVAL;
}
static int sensor_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.g_chip_ident = sensor_g_chip_ident,
.g_ctrl = sensor_g_ctrl,
.s_ctrl = sensor_s_ctrl,
.queryctrl = sensor_queryctrl,
.reset = sensor_reset,
.init = sensor_init,
.s_power = sensor_power,
.ioctl = sensor_ioctl,
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.enum_mbus_fmt = sensor_enum_fmt,
.enum_framesizes = sensor_enum_size,
.try_mbus_fmt = sensor_try_fmt,
.s_mbus_fmt = sensor_s_fmt,
.s_parm = sensor_s_parm,
.g_parm = sensor_g_parm,
.g_mbus_config = sensor_g_mbus_config,
};
static const struct v4l2_subdev_ops sensor_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
};
/* ----------------------------------------------------------------------- */
static struct cci_driver cci_drv = {
.name = SENSOR_NAME,
.addr_width = CCI_BITS_16,
.data_width = CCI_BITS_16,
};
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
struct sensor_info *info;
info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
sd = &info->sd;
glb_sd = sd;
cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv);
info->fmt = &sensor_formats[0];
info->af_first_flag = 1;
info->init_first_flag = 1;
return 0;
}
static int sensor_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd;
sd = cci_dev_remove_helper(client, &cci_drv);
kfree(to_state(sd));
return 0;
}
static const struct i2c_device_id sensor_id[] = {
{SENSOR_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, sensor_id);
static struct i2c_driver sensor_driver = {
.driver = {
.owner = THIS_MODULE,
.name = SENSOR_NAME,
},
.probe = sensor_probe,
.remove = sensor_remove,
.id_table = sensor_id,
};
static __init int init_sensor(void)
{
return cci_dev_init_helper(&sensor_driver);
}
static __exit void exit_sensor(void)
{
cci_dev_exit_helper(&sensor_driver);
}
module_init(init_sensor);
module_exit(exit_sensor);