oleavr-rgl-a500-mini-linux-.../drivers/media/platform/sunxi-vfe/device/it6604.c
Ole André Vadla Ravnås 169c65d57e Initial commit
2022-05-07 01:01:45 +02:00

606 lines
14 KiB
C

/*
* A V4L2 driver for IT6604 cameras.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/clk.h>
#include <media/v4l2-device.h>
#include <media/v4l2-chip-ident.h>
#include <media/v4l2-mediabus.h>
#include <linux/io.h>
#include "camera.h"
#include "sensor_helper.h"
MODULE_AUTHOR("zw");
MODULE_DESCRIPTION("A low-level driver for IT6604 sensors");
MODULE_LICENSE("GPL");
#define DEV_DBG_EN 1
#if (DEV_DBG_EN == 1)
#define vfe_dev_dbg(x, arg...) printk("[IT6604]"x, ##arg)
#else
#define vfe_dev_dbg(x, arg...)
#endif
#define vfe_dev_err(x, arg...) printk("[IT6604]"x, ##arg)
#define vfe_dev_print(x, arg...) printk("[IT6604]"x, ##arg)
#define LOG_ERR_RET(x) { \
int ret; \
ret = x; \
if (ret < 0) {\
vfe_dev_err("error at %s\n", __func__); \
return ret; \
} \
}
#define MCLK (24*1000*1000)
#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING
#define V4L2_IDENT_SENSOR 0x6023
/*
* Our nominal (default) frame rate.
*/
#define SENSOR_FRAME_RATE 30
/*
* The IT6604 sits on i2c with ID 0x1e
*/
#define I2C_ADDR 0x90
#define SENSOR_NAME "it6604"
static struct v4l2_subdev *glb_sd;
/*
* Information we maintain about a known sensor.
*/
struct sensor_format_struct; /* coming later */
static inline struct sensor_info *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct sensor_info, sd);
}
static int default_reg_init(struct v4l2_subdev *sd)
{
sensor_write(sd, 0x20, 0x1a);
sensor_write(sd, 0x21, 0x00);
sensor_write(sd, 0x22, 0x80);
sensor_write(sd, 0x23, 0x00);
sensor_write(sd, 0x24, 0xb8); /*0xb8 for 709 0xb2 for 601*/
sensor_write(sd, 0x25, 0x05); /*0x05 for 709 0x04 for 601*/
sensor_write(sd, 0x26, 0xb4); /*0xb4 for 709 0x64 for 601*/
sensor_write(sd, 0x27, 0x01); /*0x01 for 709 0x02 for 601*/
sensor_write(sd, 0x28, 0x93); /*0x93 for 709 0xe9 for 601*/
sensor_write(sd, 0x29, 0x00);
sensor_write(sd, 0x2a, 0x49); /*0x49 for 709 0x93 for 601*/
sensor_write(sd, 0x2b, 0x3c);
sensor_write(sd, 0x2c, 0x18);
sensor_write(sd, 0x2d, 0x04);
sensor_write(sd, 0x2e, 0x9f); /*0x9f for 709 0x56 for 601*/
sensor_write(sd, 0x2f, 0x3f);
sensor_write(sd, 0x30, 0xd9); /*0xd9 for 709 0x49 for 601*/
sensor_write(sd, 0x31, 0x3c); /*0x3c for 709 0x3d for 601*/
sensor_write(sd, 0x32, 0x10); /*0x10 for 709 0x9f for 601*/
sensor_write(sd, 0x33, 0x3f); /*0x3f for 709 0x3e for 601*/
sensor_write(sd, 0x34, 0x18);
sensor_write(sd, 0x35, 0x04);
sensor_write(sd, 0x3d, 0x40);
sensor_write(sd, 0x1b, 0x20);
sensor_write(sd, 0x1c, 0xf0); /*embedded*/
msleep(2000);
vfe_dev_print("default_reg_init delay 20ms!!!!!!!!!!!!\n");
return 0;
}
/*
* Code for dealing with controls.
* fill with different sensor module
* different sensor module has different settings here
* if not support the follow function ,retrun -EINVAL
*/
/* *********************************************begin of ******************************************** */
static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off)
{
if (on_off)
vfe_gpio_write(sd, RESET, CSI_GPIO_LOW);
else
vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH);
return 0;
}
/*
* Stuff that knows about the sensor.
*/
static int sensor_power(struct v4l2_subdev *sd, int on)
{
switch (on) {
case CSI_SUBDEV_STBY_ON:
vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n");
sensor_s_sw_stby(sd, ON);
break;
case CSI_SUBDEV_STBY_OFF:
vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n");
sensor_s_sw_stby(sd, OFF);
break;
case CSI_SUBDEV_PWR_ON:
vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n");
cci_lock(sd);
vfe_gpio_set_status(sd, PWDN, 1);
vfe_gpio_set_status(sd, RESET, 1);
vfe_gpio_write(sd, PWDN, CSI_GPIO_HIGH);
vfe_gpio_write(sd, RESET, CSI_GPIO_LOW);
usleep_range(1000, 1200);
vfe_set_mclk_freq(sd, MCLK);
vfe_set_mclk(sd, ON);
usleep_range(10000, 12000);
vfe_gpio_write(sd, POWER_EN, CSI_GPIO_HIGH);
vfe_set_pmu_channel(sd, IOVDD, ON);
vfe_set_pmu_channel(sd, AVDD, ON);
vfe_set_pmu_channel(sd, DVDD, ON);
vfe_set_pmu_channel(sd, AFVDD, ON);
vfe_gpio_write(sd, PWDN, CSI_GPIO_LOW);
usleep_range(10000, 12000);
vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH);
usleep_range(30000, 31000);
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_OFF:
vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n");
cci_lock(sd);
vfe_set_mclk(sd, OFF);
vfe_gpio_write(sd, POWER_EN, CSI_GPIO_LOW);
vfe_set_pmu_channel(sd, AFVDD, OFF);
vfe_set_pmu_channel(sd, DVDD, OFF);
vfe_set_pmu_channel(sd, AVDD, OFF);
vfe_set_pmu_channel(sd, IOVDD, OFF);
usleep_range(10000, 12000);
vfe_gpio_write(sd, PWDN, CSI_GPIO_HIGH);
vfe_gpio_write(sd, RESET, CSI_GPIO_LOW);
vfe_gpio_set_status(sd, RESET, 0);
vfe_gpio_set_status(sd, PWDN, 0);
cci_unlock(sd);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_reset(struct v4l2_subdev *sd, u32 val)
{
vfe_gpio_write(sd, RESET, CSI_GPIO_LOW);
usleep_range(5000, 6000);
vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH);
usleep_range(5000, 6000);
return 0;
}
static int sensor_detect(struct v4l2_subdev *sd)
{
data_type rdval;
rdval = 0;
LOG_ERR_RET(sensor_read(sd, 0x03, &rdval))
vfe_dev_print("reg 0x03 rdval = 0x%x\n", rdval);
LOG_ERR_RET(sensor_read(sd, 0x02, &rdval))
vfe_dev_print("reg 0x02 rdval = 0x%x\n", rdval);
return 0;
}
static int sensor_init(struct v4l2_subdev *sd, u32 val)
{
int ret;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_init\n");
/*Make sure it is a target sensor */
ret = sensor_detect(sd);
if (ret) {
vfe_dev_err("chip found is not an target chip.\n");
return ret;
}
vfe_get_standby_mode(sd, &info->stby_mode);
if ((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY)
&& info->init_first_flag == 0) {
vfe_dev_print("stby_mode and init_first_flag = 0\n");
return 0;
}
info->focus_status = 0;
info->low_speed = 0;
info->width = VGA_WIDTH;
info->height = VGA_HEIGHT;
info->hflip = 0;
info->vflip = 0;
info->gain = 0;
info->tpf.numerator = 1;
info->tpf.denominator = 30; /* 30fps */
if (info->stby_mode == 0)
info->init_first_flag = 0;
info->preview_first_flag = 1;
return 0;
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
int ret = 0;
struct sensor_info *info = to_state(sd);
switch (cmd) {
case GET_CURRENT_WIN_CFG:
if (info->current_wins != NULL) {
memcpy(arg,
info->current_wins,
sizeof(struct sensor_win_size));
ret = 0;
} else {
vfe_dev_err("empty wins!\n");
ret = -1;
}
break;
case SET_FPS:
break;
case ISP_SET_EXP_GAIN:
break;
default:
return -EINVAL;
}
return ret;
}
/*
* Store information about the video data format.
*/
static struct sensor_format_struct {
__u8 *desc;
enum v4l2_mbus_pixelcode mbus_code;
struct regval_list *regs;
int regs_size;
int bpp; /* Bytes per pixel */
} sensor_formats[] = {
{
.desc = "BT1220",
.mbus_code = V4L2_MBUS_FMT_UYVY8_1X16,
.regs = NULL,
.regs_size = 0,
.bpp = 2,
},
};
#define N_FMTS ARRAY_SIZE(sensor_formats)
/*
* Then there is the issue of window sizes. Try to capture the info here.
*/
static struct sensor_win_size sensor_win_sizes[] = {
/* 1080p */
{
.width = 1920,
.height = 1080,
.hoffset = 0,
.voffset = 0,
.regs = NULL,
.regs_size = 0,
.set_size = default_reg_init,
},
/* 720p */
{
.width = 1280,
.height = 720,
.hoffset = 0,
.voffset = 0,
.regs = NULL,
.regs_size = 0,
.set_size = default_reg_init,
},
/* 480p */
{
.width = 640,
.height = 480,
.hoffset = 0,
.voffset = 0,
.regs = NULL,
.regs_size = 0,
.set_size = default_reg_init,
},
};
#define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes))
static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index,
enum v4l2_mbus_pixelcode *code)
{
if (index >= N_FMTS)
return -EINVAL;
*code = sensor_formats[index].mbus_code;
return 0;
}
static int sensor_enum_size(struct v4l2_subdev *sd,
struct v4l2_frmsizeenum *fsize)
{
if (fsize->index > N_WIN_SIZES - 1)
return -EINVAL;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = sensor_win_sizes[fsize->index].width;
fsize->discrete.height = sensor_win_sizes[fsize->index].height;
return 0;
}
static int sensor_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
struct sensor_format_struct **ret_fmt,
struct sensor_win_size **ret_wsize)
{
int index;
struct sensor_win_size *wsize, *wsize_last_ok = NULL;
struct sensor_info *info = to_state(sd);
for (index = 0; index < N_FMTS; index++)
if (sensor_formats[index].mbus_code == fmt->code)
break;
if (index >= N_FMTS)
return -EINVAL;
if (ret_fmt != NULL)
*ret_fmt = sensor_formats + index;
/*
* Fields: the sensor devices claim to be progressive.
*/
fmt->field = V4L2_FIELD_NONE;
for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES;
wsize++) {
if (fmt->width >= wsize->width && fmt->height >= wsize->height) {
wsize_last_ok = wsize;
break;
}
wsize_last_ok = wsize;
}
if (wsize >= sensor_win_sizes + N_WIN_SIZES) {
if (NULL != wsize_last_ok) {
wsize = wsize_last_ok;
} else {
wsize--; /* Take the smallest one */
}
}
if (ret_wsize != NULL)
*ret_wsize = wsize;
info->current_wins = wsize;
/*
* Note the size we'll actually handle.
*/
fmt->width = wsize->width;
fmt->height = wsize->height;
return 0;
}
static int sensor_try_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
return sensor_try_fmt_internal(sd, fmt, NULL, NULL);
}
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->type = V4L2_MBUS_BT656;
cfg->flags = CLK_POL;
return 0;
}
/*
* Set a format.
*/
static int sensor_s_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt)
{
int ret;
struct sensor_format_struct *sensor_fmt;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_fmt\n");
ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize);
if (ret)
return ret;
if (wsize->set_size)
ret = wsize->set_size(sd);
if (ret < 0) {
vfe_dev_err("write default_reg_init error\n");
return ret;
}
info->fmt = sensor_fmt;
info->width = wsize->width;
info->height = wsize->height;
vfe_dev_print("s_fmt = %x, width = %d, height = %d\n",
sensor_fmt->mbus_code, wsize->width, wsize->height);
vfe_dev_print("s_fmt end\n");
return 0;
}
/*
* Implement G/S_PARM. There is a "high quality" mode we could try
* to do someday; for now, we just do the frame rate tweak.
*/
static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
cp->capturemode = info->capture_mode;
return 0;
}
static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_parm\n");
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (info->tpf.numerator == 0)
return -EINVAL;
info->capture_mode = cp->capturemode;
return 0;
}
static int sensor_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc)
{
switch (qc->id) {
case V4L2_CID_GAIN:
return v4l2_ctrl_query_fill(qc, 0, 10000 * 10000, 1, 16);
case V4L2_CID_EXPOSURE:
return v4l2_ctrl_query_fill(qc, 0, 10000 * 10000, 1, 16);
}
return 0;
}
static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
return 0;
}
static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
return 0;
}
static int sensor_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.g_chip_ident = sensor_g_chip_ident,
.g_ctrl = sensor_g_ctrl,
.s_ctrl = sensor_s_ctrl,
.queryctrl = sensor_queryctrl,
.reset = sensor_reset,
.init = sensor_init,
.s_power = sensor_power,
.ioctl = sensor_ioctl,
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.enum_mbus_fmt = sensor_enum_fmt,
.enum_framesizes = sensor_enum_size,
.try_mbus_fmt = sensor_try_fmt,
.s_mbus_fmt = sensor_s_fmt,
.s_parm = sensor_s_parm,
.g_parm = sensor_g_parm,
.g_mbus_config = sensor_g_mbus_config,
};
static const struct v4l2_subdev_ops sensor_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
};
/* ----------------------------------------------------------------------- */
static struct cci_driver cci_drv = {
.name = SENSOR_NAME,
.addr_width = CCI_BITS_8,
.data_width = CCI_BITS_8,
};
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
struct sensor_info *info;
info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
sd = &info->sd;
glb_sd = sd;
cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv);
info->fmt = &sensor_formats[0];
info->af_first_flag = 1;
info->init_first_flag = 1;
return 0;
}
static int sensor_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd;
sd = cci_dev_remove_helper(client, &cci_drv);
kfree(to_state(sd));
return 0;
}
static const struct i2c_device_id sensor_id[] = {
{SENSOR_NAME, 0},
{}
};
MODULE_DEVICE_TABLE(i2c, sensor_id);
static struct i2c_driver sensor_driver = {
.driver = {
.owner = THIS_MODULE,
.name = SENSOR_NAME,
},
.probe = sensor_probe,
.remove = sensor_remove,
.id_table = sensor_id,
};
static __init int init_sensor(void)
{
return cci_dev_init_helper(&sensor_driver);
}
static __exit void exit_sensor(void)
{
cci_dev_exit_helper(&sensor_driver);
}
module_init(init_sensor);
module_exit(exit_sensor);