oleavr-rgl-a500-mini-linux-.../drivers/media/platform/sunxi-vfe/device/ov2710_mipi.c
Ole André Vadla Ravnås 169c65d57e Initial commit
2022-05-07 01:01:45 +02:00

988 lines
22 KiB
C
Executable file

/*
* A V4L2 driver for OV2710 Raw cameras.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/clk.h>
#include <media/v4l2-device.h>
#include <media/v4l2-chip-ident.h>
#include <media/v4l2-mediabus.h>
#include <linux/io.h>
#include "camera.h"
#include "sensor_helper.h"
MODULE_AUTHOR("xiongbiao");
MODULE_DESCRIPTION("A low-level driver for OV2710 Raw sensors");
MODULE_LICENSE("GPL");
//for internel driver debug
#define DEV_DBG_EN 1
#if(DEV_DBG_EN == 1)
#define vfe_dev_dbg(x,arg...) printk("[OV2710 Raw]"x,##arg)
#else
#define vfe_dev_dbg(x,arg...)
#endif
#define vfe_dev_err(x,arg...) printk("[OV2710 Raw]"x,##arg)
#define vfe_dev_print(x,arg...) printk("[OV2710 Raw]"x,##arg)
#define LOG_ERR_RET(x) { \
int ret; \
ret = x; \
if(ret < 0) {\
vfe_dev_err("error at %s\n",__func__); \
return ret; \
} \
}
//define module timing
#define MCLK (24*1000*1000)
#define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_LOW
#define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH
#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING
#define V4L2_IDENT_SENSOR 0x2710
/*
* Our nominal (default) frame rate.
*/
#define SENSOR_FRAME_RATE 30
/*
* The ov2710 i2c address
*/
//#define I2C_ADDR 0x6c
#define OV2710_WRITE_ADDR (0x6c)
#define OV2710_READ_ADDR (0x6d)
//static struct delayed_work sensor_s_ae_ratio_work;
static struct v4l2_subdev *glb_sd;
#define SENSOR_NAME "ov2710_mipi"
/*
* Information we maintain about a known sensor.
*/
struct sensor_format_struct; /* coming later */
struct cfg_array { /* coming later */
struct regval_list * regs;
int size;
};
static inline struct sensor_info *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct sensor_info, sd);
}
/*
* The default register settings
*
*/
static struct regval_list sensor_default_regs[] =
{};
static struct regval_list sensor_1080p_regs[] = { //1080: 1920*1080@30fps
{0x3103,0x93},
{0x3008,0x82},
{REG_DLY,0x10},
{0x3008,0x42},
{0x3017,0x00},//7f},pad output enable01 0-input 1-output
{0x3018,0x00},//fc},pad output enable02 0-input 1-output
{0x3706,0x61},
{0x3712,0x0c},
{0x3630,0x6d},
{0x3801,0xb4},
{0x3621,0x04},
{0x3604,0x60},
{0x3603,0xa7},
{0x3631,0x26},
{0x3600,0x04},
{0x3620,0x37},
{0x3623,0x00},
{0x3702,0x9e},
{0x3703,0x5c},
{0x3704,0x40},
{0x370d,0x0f},
{0x3713,0x9f},
{0x3714,0x4c},
{0x3710,0x9e},
{0x3801,0xc4},
{0x3605,0x05},
{0x3606,0x3f},
{0x302d,0x90},
{0x370b,0x40},
{0x3716,0x31},
{0x3707,0x52},
{0x380d,0x74},
{0x5181,0x20},
{0x518f,0x00},
{0x4301,0xff},
{0x4303,0x00},
{0x3a00,0x78},
// {0x300f,0x88},
// {0x3011,0x28},
{0x3a1a,0x06},
{0x3a18,0x00},
{0x3a19,0x7a},
{0x3a13,0x54},
{0x382e,0x0f},
{0x381a,0x1a},
{0x401d,0x02},
{0x5688,0x03},
{0x5684,0x07},
{0x5685,0xa0},
{0x5686,0x04},
{0x5687,0x43},
{0x3011,0x0a},
{0x300f,0xc3},
{REG_DLY,0x10},
//{0x3017,0x00},
//{0x3018,0x00},
{0x300e,0x04},
{0x3030,0x2b},// extent dvdd
{0x4801,0x0f},
// {0x4800,0x24},
//AEC control
{0x3a0f,0x40},
{0x3a10,0x38},
{0x3a1b,0x48},
{0x3a1e,0x30},
{0x3a11,0x90},
{0x3a1f,0x10},
//{0x3008,0x02},
/*close ae */
{0x3503,0x07},
//{0x302c,0x02},
{0x3501,0x2e},
{0x3502,0x00},
//{0x3501,0x46},
//{0x3502,0x20},
{0x350b,0x10},
//{0x3a00,0x7c},
//{0x5001,0x4f},
/* close awb */
{0x5001,0x4f},
{0x3406,0x01},
{0x3400,0x04},
{0x3401,0x00},
{0x3402,0x04},
{0x3403,0x00},
{0x3404,0x04},
{0x3405,0x00},
/* modified blc */
//{0x4002,0x40},
{0x4000,0x05},
//{0x401d,0x02},
/*drive capacity*/
{0x302c,0x00},
/* close lenc */
//{0x5000,0xdf},
{0x5000,0x5b},
{0x3008,0x02},//nomal work mode
};
/*
* Here we'll try to encapsulate the changes for just the output
* video format.
*
*/
static struct regval_list sensor_fmt_raw[] = {
};
static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->exp;
vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp);
return 0;
}
static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val)
{
unsigned char explow,expmid,exphigh;
struct sensor_info *info = to_state(sd);
if(exp_val>0x1fffff)
exp_val=0x1fffff;
exphigh = (unsigned char) ( (0x0f0000&exp_val)>>16);
expmid = (unsigned char) ( (0x00ff00&exp_val)>>8);
explow = (unsigned char) (0x0000ff&exp_val) ;
sensor_write(sd, 0x3502, explow);
sensor_write(sd, 0x3501, expmid);
sensor_write(sd, 0x3500, exphigh);
info->exp = exp_val;
return 0;
}
static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->gain;
vfe_dev_dbg("sensor_get_gain = %d\n", info->gain);
return 0;
}
static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val)
{
struct sensor_info *info = to_state(sd);
unsigned char gainlow=0;
unsigned char gainhigh=0;
unsigned char gainlow_l4b=0;
unsigned int tmp_gain_val=0,real_gain = 1, awb_gain = 0;
tmp_gain_val=gain_val;
//determine ?gain_val>31
if(tmp_gain_val>31)
{
gainlow |= 0x10;
real_gain = real_gain * 2;
tmp_gain_val = tmp_gain_val>>1;
}
//determine ?gain_val>2*31
if(tmp_gain_val>31)
{
gainlow |= 0x20;
real_gain = real_gain * 2;
tmp_gain_val = tmp_gain_val>>1;
}
//determine ?gain_val>4*31
if(tmp_gain_val>31)
{
gainlow |= 0x40;
real_gain = real_gain * 2;
tmp_gain_val = tmp_gain_val>>1;
}
//determine ?gain_val>8*31
if(tmp_gain_val>31)
{
gainlow |= 0x80;
real_gain = real_gain * 2;
tmp_gain_val = tmp_gain_val>>1;
}
//determine ?gain_val>16*31
if(tmp_gain_val>31)
{
gainhigh = 0x01;
real_gain = real_gain * 2;
tmp_gain_val = tmp_gain_val>>1;
}
if(tmp_gain_val>=16)
gainlow_l4b=((tmp_gain_val-16)&0x0f);
gainlow = gainlow | gainlow_l4b;
real_gain = real_gain * (16*gainlow_l4b /16 +16);
awb_gain = gain_val * 1024/real_gain;
sensor_write(sd, 0x350b, gainlow);
sensor_write(sd, 0x350a, gainhigh);
sensor_write(sd, 0x3400, (awb_gain >> 8));
sensor_write(sd, 0x3401, (awb_gain & 0xff));
sensor_write(sd, 0x3402, (awb_gain >> 8));
sensor_write(sd, 0x3403, (awb_gain & 0xff));
sensor_write(sd, 0x3404, (awb_gain >> 8));
sensor_write(sd, 0x3405, (awb_gain & 0xff));
info->gain = gain_val;
return 0;
}
static int ov2710_sensor_vts;
static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain *exp_gain)
{
int exp_val, gain_val,shutter,frame_length;
struct sensor_info *info = to_state(sd);
exp_val = exp_gain->exp_val;
gain_val = exp_gain->gain_val;
if(gain_val<1*16)
gain_val=16;
if(gain_val>64*16-1)
gain_val=64*16-1;
if(exp_val>0xfffff)
exp_val=0xfffff;
shutter = exp_val/16;
if(shutter > ov2710_sensor_vts- 4)
frame_length = shutter + 4;
else
frame_length = ov2710_sensor_vts;
sensor_write(sd,0x3212,0x00);
sensor_write(sd, 0x380f, (frame_length & 0xff));
sensor_write(sd, 0x380e, (frame_length >> 8));
sensor_s_exp(sd,exp_val);
sensor_s_gain(sd,gain_val);
sensor_write(sd,0x3212,0x10);
sensor_write(sd,0x3212,0xa0);
info->exp = exp_val;
info->gain = gain_val;
return 0;
}
static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off)
{
int ret = 0;
return ret;
}
/*
* Stuff that knows about the sensor.
*/
static int sensor_power(struct v4l2_subdev *sd, int on)
{
int ret;
ret = 0;
switch(on)
{
case CSI_SUBDEV_STBY_ON:
vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n");
ret = sensor_s_sw_stby(sd, CSI_GPIO_HIGH);
if(ret < 0)
vfe_dev_err("soft stby falied!\n");
usleep_range(10000,12000);
cci_lock(sd);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
cci_unlock(sd);
vfe_set_mclk(sd,OFF);
break;
case CSI_SUBDEV_STBY_OFF:
vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n");
cci_lock(sd);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(10000,12000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
usleep_range(10000,12000);
ret = sensor_s_sw_stby(sd, CSI_GPIO_LOW);
if(ret < 0)
vfe_dev_err("soft stby off falied!\n");
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_ON:
vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n");
cci_lock(sd);
vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output
vfe_gpio_set_status(sd,RESET,1);//set the gpio to output
vfe_gpio_set_status(sd,POWER_EN,1);//set the gpio to output
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW);
usleep_range(1000,1200);
vfe_set_pmu_channel(sd,IOVDD,ON);
usleep_range(1000,1200);
vfe_set_pmu_channel(sd,AVDD,ON);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH);
vfe_set_pmu_channel(sd,DVDD,ON);
vfe_set_pmu_channel(sd,AFVDD,ON);
usleep_range(7000,8000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
usleep_range(10000,12000);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(20000,22000);
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(10000,12000);
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_OFF:
vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n");
cci_lock(sd);
vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output
vfe_gpio_set_status(sd,RESET,1);//set the gpio to output
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
vfe_set_mclk(sd,OFF);
vfe_set_pmu_channel(sd,AFVDD,OFF);
vfe_set_pmu_channel(sd,DVDD,OFF);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW);
vfe_set_pmu_channel(sd,AVDD,OFF);
vfe_set_pmu_channel(sd,IOVDD,OFF);
vfe_gpio_set_status(sd,RESET,0);//set the gpio to input
vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input
vfe_gpio_set_status(sd,POWER_EN,0);//set the gpio to input
cci_unlock(sd);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_reset(struct v4l2_subdev *sd, u32 val)
{
switch(val)
{
case 0:
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(10000,12000);
break;
case 1:
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(10000,12000);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_detect(struct v4l2_subdev *sd)
{
data_type rdval;
LOG_ERR_RET(sensor_read(sd, 0x300A, &rdval))
if(rdval != (V4L2_IDENT_SENSOR>>8))
{
printk(KERN_DEBUG"*********sensor error,read id is %d.\n",rdval);
return -ENODEV;
}
LOG_ERR_RET(sensor_read(sd, 0x300B, &rdval))
if(rdval != (V4L2_IDENT_SENSOR&0x00ff))
{
printk(KERN_DEBUG"*********sensor error,read id is %d.\n",rdval);
return -ENODEV;
}
else
{
printk(KERN_DEBUG"*********find ov2710 raw data camera sensor now.\n");
return 0;
}
}
static int sensor_init(struct v4l2_subdev *sd, u32 val)
{
int ret;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_init\n");
/*Make sure it is a target sensor*/
ret = sensor_detect(sd);
if (ret) {
vfe_dev_err("chip found is not an target chip.\n");
return ret;
}
vfe_get_standby_mode(sd,&info->stby_mode);
if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \
&& info->init_first_flag == 0) {
vfe_dev_print("stby_mode and init_first_flag = 0\n");
return 0;
}
info->focus_status = 0;
info->low_speed = 0;
info->width = HD1080_WIDTH;
info->height = HD1080_HEIGHT;
info->hflip = 0;
info->vflip = 0;
info->gain = 0;
info->tpf.numerator = 1;
info->tpf.denominator = 30; /* 30fps */
ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs));
if(ret < 0) {
vfe_dev_err("write sensor_default_regs error\n");
return ret;
}
if(info->stby_mode == 0)
info->init_first_flag = 0;
info->preview_first_flag = 1;
return 0;
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
int ret=0;
struct sensor_info *info = to_state(sd);
switch(cmd) {
case GET_CURRENT_WIN_CFG:
if(info->current_wins != NULL)
{
memcpy( arg,
info->current_wins,
sizeof(struct sensor_win_size) );
ret=0;
}
else
{
vfe_dev_err("empty wins!\n");
ret=-1;
}
break;
case SET_FPS:
break;
case ISP_SET_EXP_GAIN:
ret = sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg);
break;
default:
return -EINVAL;
}
return ret;
}
/*
* Store information about the video data format.
*/
static struct sensor_format_struct {
__u8 *desc;
//__u32 pixelformat;
enum v4l2_mbus_pixelcode mbus_code;
struct regval_list *regs;
int regs_size;
int bpp; /* Bytes per pixel */
}sensor_formats[] = {
{
.desc = "Raw RGB Bayer",
.mbus_code =V4L2_MBUS_FMT_SBGGR10_10X1,
.regs = sensor_fmt_raw,
.regs_size = ARRAY_SIZE(sensor_fmt_raw),
.bpp = 1
},
};
#define N_FMTS ARRAY_SIZE(sensor_formats)
/*
* Then there is the issue of window sizes. Try to capture the info here.
*/
static struct sensor_win_size sensor_win_sizes[] = {
/* 1080P */
{
.width = HD1080_WIDTH,
.height = HD1080_HEIGHT,
.hoffset = 0,
.voffset = 0,
.hts = 2420,//2376,//2415,// 2382,//724,
.vts = 1102,//1122,//1104,//1120,//1104,
.pclk = 80*1000*1000,
.mipi_bps = 800*1000*1000,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 1,
.intg_max = 1102<<4,//1122<<4,
.gain_min = 1<<4,
.gain_max = 16<<4,
.regs = sensor_1080p_regs,//
.regs_size = ARRAY_SIZE(sensor_1080p_regs),//
.set_size = NULL,
},
/* 720P */
{
.width = HD720_WIDTH,
.height = HD720_HEIGHT,
.hoffset = 0,
.voffset = 0,
.hts = 2420,//2376,//2415,// 2382,//724,
.vts = 1102,//1122,//1104,//1120,//1104,
.pclk = 80*1000*1000,
.mipi_bps = 800*1000*1000,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 1,
.intg_max = 1102<<4,//1122<<4,
.gain_min = 1<<4,
.gain_max = 16<<4,
.width_input = 1920,
.height_input = 1080,
.regs = sensor_1080p_regs,//
.regs_size = ARRAY_SIZE(sensor_1080p_regs),//
.set_size = NULL,
},
/* VGA */
{
.width = VGA_WIDTH,
.height = VGA_HEIGHT,
.hoffset = 240,
.voffset = 0,
.hts = 2420,//2376,//2415,// 2382,//724,
.vts = 1102,//1122,//1104,//1120,//1104,
.pclk = 80*1000*1000,
.mipi_bps = 800*1000*1000,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 1,
.intg_max = 1102<<4,//1122<<4,
.gain_min = 1<<4,
.gain_max = 16<<4,
.width_input = 1440,
.height_input = 1080,
.regs = sensor_1080p_regs,//
.regs_size = ARRAY_SIZE(sensor_1080p_regs),//
.set_size = NULL,
},
};
#define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes))
static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index,
enum v4l2_mbus_pixelcode *code)
{
if (index >= N_FMTS)
return -EINVAL;
*code = sensor_formats[index].mbus_code;
return 0;
}
static int sensor_enum_size(struct v4l2_subdev *sd,
struct v4l2_frmsizeenum *fsize)
{
if(fsize->index > N_WIN_SIZES-1)
return -EINVAL;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = sensor_win_sizes[fsize->index].width;
fsize->discrete.height = sensor_win_sizes[fsize->index].height;
return 0;
}
static int sensor_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
struct sensor_format_struct **ret_fmt,
struct sensor_win_size **ret_wsize)
{
int index;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
for (index = 0; index < N_FMTS; index++)
if (sensor_formats[index].mbus_code == fmt->code)
break;
if (index >= N_FMTS)
return -EINVAL;
if (ret_fmt != NULL)
*ret_fmt = sensor_formats + index;
/*
* Fields: the sensor devices claim to be progressive.
*/
fmt->field = V4L2_FIELD_NONE;
/*
* Round requested image size down to the nearest
* we support, but not below the smallest.
*/
for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++)
if (fmt->width >= wsize->width && fmt->height >= wsize->height)
break;
if (wsize >= sensor_win_sizes + N_WIN_SIZES)
wsize--; /* Take the smallest one */
if (ret_wsize != NULL)
*ret_wsize = wsize;
/*
* Note the size we'll actually handle.
*/
fmt->width = wsize->width;
fmt->height = wsize->height;
info->current_wins = wsize;
return 0;
}
static int sensor_try_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
return sensor_try_fmt_internal(sd, fmt, NULL, NULL);
}
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->type = V4L2_MBUS_CSI2;
cfg->flags = 0|V4L2_MBUS_CSI2_1_LANE|V4L2_MBUS_CSI2_CHANNEL_0;
return 0;
}
/*
* Set a format.
*/
static int sensor_s_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
int ret;
struct sensor_format_struct *sensor_fmt;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_fmt\n");
// sensor_write_array(sd, sensor_oe_disable_regs, ARRAY_SIZE(sensor_oe_disable_regs));
ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize);
if (ret)
return ret;
if(info->capture_mode == V4L2_MODE_VIDEO)
{
//video
}
else if(info->capture_mode == V4L2_MODE_IMAGE)
{
//image
}
LOG_ERR_RET(sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size))
ret = 0;
if (wsize->regs)
{
// usleep_range(5000,6000);
LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size))
}
if (wsize->set_size)
LOG_ERR_RET(wsize->set_size(sd))
info->fmt = sensor_fmt;
info->width = wsize->width;
info->height = wsize->height;
info->exp = 0;
info->gain = 0;
ov2710_sensor_vts = wsize->vts;
vfe_dev_print("s_fmt set width = %d, height = %d\n",wsize->width,wsize->height);
if(info->capture_mode == V4L2_MODE_VIDEO)
{
//video
} else {
//capture image
}
//sensor_write_array(sd, sensor_oe_enable_regs, ARRAY_SIZE(sensor_oe_enable_regs));
return 0;
}
/*
* Implement G/S_PARM. There is a "high quality" mode we could try
* to do someday; for now, we just do the frame rate tweak.
*/
static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
cp->capturemode = info->capture_mode;
return 0;
}
static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_parm\n");
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (info->tpf.numerator == 0)
return -EINVAL;
info->capture_mode = cp->capturemode;
return 0;
}
static int sensor_queryctrl(struct v4l2_subdev *sd,
struct v4l2_queryctrl *qc)
{
/* Fill in min, max, step and default value for these controls. */
/* see include/linux/videodev2.h for details */
switch (qc->id) {
case V4L2_CID_GAIN:
return v4l2_ctrl_query_fill(qc, 1*16, 16*16, 1, 16);
case V4L2_CID_EXPOSURE:
return v4l2_ctrl_query_fill(qc, 1, 65536*16, 1, 1);
case V4L2_CID_FRAME_RATE:
return v4l2_ctrl_query_fill(qc, 15, 120, 1, 30);
}
return -EINVAL;
}
static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_g_gain(sd, &ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_g_exp(sd, &ctrl->value);
}
return -EINVAL;
}
static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct v4l2_queryctrl qc;
int ret;
qc.id = ctrl->id;
ret = sensor_queryctrl(sd, &qc);
if (ret < 0) {
return ret;
}
if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) {
vfe_dev_err("max gain qurery is %d,min gain qurey is %d\n",qc.maximum,qc.minimum);
return -ERANGE;
}
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_s_gain(sd, ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_s_exp(sd, ctrl->value);
}
return -EINVAL;
}
static int sensor_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.g_chip_ident = sensor_g_chip_ident,
.g_ctrl = sensor_g_ctrl,
.s_ctrl = sensor_s_ctrl,
.queryctrl = sensor_queryctrl,
.reset = sensor_reset,
.init = sensor_init,
.s_power = sensor_power,
.ioctl = sensor_ioctl,
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.enum_mbus_fmt = sensor_enum_fmt,
.enum_framesizes = sensor_enum_size,
.try_mbus_fmt = sensor_try_fmt,
.s_mbus_fmt = sensor_s_fmt,
.s_parm = sensor_s_parm,
.g_parm = sensor_g_parm,
.g_mbus_config = sensor_g_mbus_config,
};
static const struct v4l2_subdev_ops sensor_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
};
/* ----------------------------------------------------------------------- */
static struct cci_driver cci_drv = {
.name = SENSOR_NAME,
.addr_width = CCI_BITS_16,
.data_width = CCI_BITS_8,
};
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
struct sensor_info *info;
info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
sd = &info->sd;
glb_sd = sd;
cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv);
info->fmt = &sensor_formats[0];
info->af_first_flag = 1;
info->init_first_flag = 1;
return 0;
}
static int sensor_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd;
sd = cci_dev_remove_helper(client, &cci_drv);
kfree(to_state(sd));
return 0;
}
static const struct i2c_device_id sensor_id[] = {
{SENSOR_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, sensor_id);
static struct i2c_driver sensor_driver = {
.driver = {
.owner = THIS_MODULE,
.name = SENSOR_NAME,
},
.probe = sensor_probe,
.remove = sensor_remove,
.id_table = sensor_id,
};
static __init int init_sensor(void)
{
return cci_dev_init_helper(&sensor_driver);
}
static __exit void exit_sensor(void)
{
cci_dev_exit_helper(&sensor_driver);
}
module_init(init_sensor);
module_exit(exit_sensor);