oleavr-rgl-a500-mini-linux-.../drivers/media/platform/sunxi-vfe/device/s5k5e2yx.c
Ole André Vadla Ravnås 169c65d57e Initial commit
2022-05-07 01:01:45 +02:00

974 lines
24 KiB
C
Executable file

/*
* A V4L2 driver for s5k5e2_mipi cameras.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/clk.h>
#include <media/v4l2-device.h>
#include <media/v4l2-chip-ident.h>
#include <media/v4l2-mediabus.h>
#include <linux/io.h>
#include "camera.h"
#include "sensor_helper.h"
MODULE_AUTHOR("Chomoly");
MODULE_DESCRIPTION("A low-level driver for s5k5e2yx sensors");
MODULE_LICENSE("GPL");
//for internel driver debug
#define DEV_DBG_EN 1
#if(DEV_DBG_EN == 1)
#define vfe_dev_dbg(x,arg...) printk("[s5k5e2yx]"x,##arg)
#else
#define vfe_dev_dbg(x,arg...)
#endif
#define vfe_dev_err(x,arg...) printk("[s5k5e2yx]"x,##arg)
#define vfe_dev_print(x,arg...) printk("[s5k5e2yx]"x,##arg)
#define LOG_ERR_RET(x) { \
int ret; \
ret = x; \
if(ret < 0) {\
vfe_dev_err("error at %s\n",__func__); \
return ret; \
} \
}
//define module timing
#define MCLK (24*1000*1000)
#define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH
#define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH
#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_FALLING
#define V4L2_IDENT_SENSOR 0x5e20
/*
* Our nominal (default) frame rate.
*/
#ifdef FPGA
#define SENSOR_FRAME_RATE 15
#else
#define SENSOR_FRAME_RATE 30
#endif
/*
* The s5k5e2_mipi sits on i2c with ID 0x20
*/
#define I2C_ADDR (0x20)
#define SENSOR_NAME "s5k5e2yx"
static struct v4l2_subdev *glb_sd;
/*
* Information we maintain about a known sensor.
*/
struct sensor_format_struct; /* coming later */
struct cfg_array { /* coming later */
struct regval_list * regs;
int size;
};
static inline struct sensor_info *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct sensor_info, sd);
}
/*
* The default register settings
*
*/
static struct regval_list sensor_default_regs[] = {
// / +++++++++++++++++++++++++++//
// Reset for operation
{0x0100,0x00}, //stream off
//Analog Timing Tuning (0817)
{0x3000,0x04}, // ct_ld_start
{0x3002,0x03}, // ct_sl_start
{0x3003,0x04}, // ct_sl_margin
{0x3004,0x02}, // ct_rx_start
{0x3005,0x00}, // ct_rx_margin (MSB)
{0x3006,0x10}, // ct_rx_margin (LSB)
{0x3007,0x03}, // ct_tx_start
{0x3008,0x55}, // ct_tx_width
{0x3039,0x00}, // cintc1_margin
{0x303A,0x00}, // cintc2_margin
{0x303B,0x00}, // offs_sh
{0x3009,0x05}, // ct_srx_margin
{0x300A,0x55}, // ct_stx_width
{0x300B,0x38}, // ct_dstx_width
{0x300C,0x10}, // ct_stx2dstx
{0x3012,0x05}, // ct_cds_start
{0x3013,0x00}, // ct_s1s_start
{0x3014,0x22}, // ct_s1s_end
{0x300E,0x79}, // ct_s3_width
{0x3010,0x68}, // ct_s4_width
{0x3019,0x03}, // ct_s4d_start
{0x301A,0x00}, // ct_pbr_start
{0x301B,0x06}, // ct_pbr_width
{0x301C,0x00}, // ct_pbs_start
{0x301D,0x22}, // ct_pbs_width
{0x301E,0x00}, // ct_pbr_ob_start
{0x301F,0x10}, // ct_pbr_ob_width
{0x3020,0x00}, // ct_pbs_ob_start
{0x3021,0x00}, // ct_pbs_ob_width
{0x3022,0x0A}, // ct_cds_lim_start
{0x3023,0x1E}, // ct_crs_start
{0x3024,0x00}, // ct_lp_hblk_cds_start (MSB)
{0x3025,0x00}, // ct_lp_hblk_cds_start (LSB)
{0x3026,0x00}, // ct_lp_hblk_cds_end (MSB)
{0x3027,0x00}, // ct_lp_hblk_cds_end (LSB)
{0x3028,0x1A}, // ct_rmp_off_start
{0x3015,0x00}, // ct_rmp_rst_start (MSB)
{0x3016,0x84}, // ct_rmp_rst_start (LSB)
{0x3017,0x00}, // ct_rmp_sig_start (MSB)
{0x3018,0xA0}, // ct_rmp_sig_start (LSB)
{0x302B,0x10}, // ct_cnt_margin
{0x302C,0x0A}, // ct_rmp_per
{0x302D,0x06}, // ct_cnt_ms_margin1
{0x302E,0x05}, // ct_cnt_ms_margin2
{0x302F,0x0E}, // rst_mx
{0x3030,0x2F}, // sig_mx
{0x3031,0x08}, // ct_latch_start
{0x3032,0x05}, // ct_latch_width
{0x3033,0x09}, // ct_hold_start
{0x3034,0x05}, // ct_hold_width
{0x3035,0x00}, // ct_lp_hblk_dbs_start (MSB)
{0x3036,0x00}, // ct_lp_hblk_dbs_start (LSB)
{0x3037,0x00}, // ct_lp_hblk_dbs_end (MSB)
{0x3038,0x00}, // ct_lp_hblk_dbs_end (LSB)
{0x3088,0x06}, // ct_lat_lsb_offset_start1
{0x308A,0x08}, // ct_lat_lsb_offset_end1
{0x308C,0x05}, // ct_lat_lsb_offset_start2
{0x308E,0x07}, // ct_lat_lsb_offset_end2
{0x3090,0x06}, // ct_conv_en_offset_start1
{0x3092,0x08}, // ct_conv_en_offset_end1
{0x3094,0x05}, // ct_conv_en_offset_start2
{0x3096,0x21}, // ct_conv_en_offset_end2
//CDS
{0x3099,0x0E}, // cds_option ([3]:crs switch disable, s3,s4 strengthx16)
{0x3070,0x10}, // comp1_bias (default:77)
{0x3085,0x11}, // comp1_bias (gain1~4)
{0x3086,0x01}, // comp1_bias (gain4~8) modified 8/13
{0x306B,0x10},
//RMP
{0x3064,0x00}, // Multiple sampling(gainx8,x16)
{0x3062,0x08}, // off_rst
//DBR
{0x3061,0x11}, // dbr_tune_rd (default :08, 0E 3.02V) 3.1V
{0x307B,0x20}, // dbr_tune_rgsl (default :08)
//Bias sampling
{0x3068,0x00}, // RMP BP bias sampling
{0x3074,0x00}, // Pixel bias sampling [2]:Default L
{0x307D,0x00}, // VREF sampling [1]
{0x3045,0x01}, // ct_opt_l1_start
{0x3046,0x05}, // ct_opt_l1_width
{0x3047,0x78},
//Smart PLA
{0x307F,0xB1}, //RDV_OPTION[5:4], RG default high
{0x3098,0x01}, //CDS_OPTION[16] SPLA-II enable
{0x305C,0xF6}, //lob_extension[6]
{0x3063,0x27}, // ADC_SAT 490mV --> 610mV
{0x320C,0x07}, // ADC_MAX (def:076Ch --> 0700h)
{0x320D,0x00},
{0x3400,0x01}, // GAS bypass
{0x3235,0x49}, // L/F-ADLC on
{0x3233,0x00}, // D-pedestal L/F ADLC off (1FC0h)
{0x3234,0x00},
{0x3300,0x0D}, //BPC bypass
{0x0204,0x00}, //Analog gain x16
{0x0205,0x20},
//{0x0114,0x01},
// streaming ON
{0x0100,0x01},
};
static struct regval_list sensor_qsxga_regs[] = { //2576*1936 pclk=89.5MHz//2560x1920
#if 1
{0x0100,0x00}, //stream off
//{0x0301,0x01},
{0x0301,0x01},
{REG_DLY,0x22},
// Size Setting
{0x0305,0x05}, //PLLP (def:5)pre_pll_clk
{0x0306,0x00},
{0x0307,0xB3}, //PLLM (def:CCh 204d --> B3h 179d)pll_multiple
{0x3C1F,0x00}, //PLLS pll_scaler
{0x0820,0x03}, // requested link bit rate mbps : (def:3D3h 979d --> 35Bh 859d)
{0x0821,0x5B},
{0x3C1C,0x58}, //dbr_div 7:4 sys_clk_divider 3:0 divider for DBLR
// Size Setting
{0x0340,0x07}, // frame_length_lines : def. 1962d (7C2 --> 7A6 Mimnimum 22 lines)1959
{0x0341,0xA7},
{0x0342,0x0B}, // line_length_pck : def. 2900d
{0x0343,0x54},
{0x0900,0x00},
{0x0901,0x11},
{0x3c33,0x00},
{0x0344,0x00}, //x_addr_start :8
{0x0345,0x08},
{0x0346,0x00}, //y_addr_start :248
{0x0347,0x08},
{0x0348,0x0A}, //x_addr_end :2567
{0x0349,0x07},
{0x034A,0x07}, //y_addr_end :1687
{0x034B,0x87},
{0x034C,0x0A}, //x_output size :2560
{0x034D,0x00},
{0x034E,0x07}, //y_output size :1440
{0x034F,0x80},
{0x0387,0x01},
//Integration time
{0x0202,0x02}, // coarse integration
{0x0203,0x00},
//{0x0200,0x0A}, // fine integration (AA8h --> AC4h)
{0x0200,0x03},
{0x0201,0x14},
// streaming ON
{0x0100,0x01},
#endif
};
/*
* Here we'll try to encapsulate the changes for just the output
* video format.
*
*/
static struct regval_list sensor_fmt_raw[] = {
};
static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->exp;
vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp);
return 0;
}
static int s5k5e2_sensor_vts ;
static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain *exp_gain)
{
int exp_val, gain_val,shutter,frame_length;
unsigned char explow,exphigh;
unsigned char gainlow=0;
unsigned char gainhigh=0;
struct sensor_info *info = to_state(sd);
exp_val = exp_gain->exp_val;
gain_val = exp_gain->gain_val;
exp_val=exp_val>>4;//rounding to 1
shutter = exp_val;
gain_val=gain_val*2;//shift to 1/32 step
exphigh = (unsigned char) ( (0xff00&exp_val)>>8);
explow = (unsigned char) ( (0x00ff&exp_val) );
gainlow=(unsigned char)(gain_val&0xff);
gainhigh=(unsigned char)((gain_val>>8)&0xff);
if(shutter > s5k5e2_sensor_vts-4)
frame_length = shutter+4;
else
frame_length = s5k5e2_sensor_vts;
vfe_dev_dbg("frame_length = %d,%d,%d\n",frame_length,shutter,s5k5e2_sensor_vts);
sensor_write(sd,0x0104,0x01);
sensor_write(sd, 0x0341,( (frame_length) & 0xff));
sensor_write(sd, 0x0340,((frame_length) >> 8));
sensor_write(sd, 0x0203, explow);
sensor_write(sd, 0x0202, exphigh);
sensor_write(sd, 0x0205, gainlow);
sensor_write(sd, 0x0204, gainhigh);
sensor_write(sd,0x0104,0x00);
//vfe_dev_dbg("s5k5e2 sensor_set_gain = %d, Done!\n", gain_val);
info->gain = gain_val;
info->exp = exp_val;
return 0;
}
static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val)
{
unsigned char explow,exphigh;
data_type tmp1,tmp2;
unsigned short tmp = 0;
struct sensor_info *info = to_state(sd);
//vfe_dev_dbg("sensor_set_exposure = %d\n", exp_val);
if(exp_val>0xffffff)
exp_val=0xfffff0;
if(exp_val<16)
exp_val=16;
exp_val=(exp_val+8)>>4;//rounding to 1
//printk("sensor_set_exposure real= %d\n", exp_val);
exphigh = (unsigned char) ( (0xff00&exp_val)>>8);
explow = (unsigned char) ( (0x00ff&exp_val) );
sensor_write(sd,0x0104,0x01);
sensor_write(sd, 0x0203, explow);//coarse integration time
sensor_write(sd, 0x0202, exphigh);
sensor_write(sd,0x0104,0x00);
sensor_read(sd,0x0203,&tmp1);
sensor_read(sd,0x0202,&tmp2);
tmp = ((tmp2<<8)|tmp1);
printk("readout shutter =%d\n",tmp);
info->exp = exp_val;
return 0;
}
static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->gain;
vfe_dev_dbg("sensor_get_gain = %d\n", info->gain);
return 0;
}
static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val)
{
struct sensor_info *info = to_state(sd);
unsigned char gainlow=0;
unsigned char gainhigh=0;
gain_val=gain_val*2;//step 32
gainlow=(unsigned char)(gain_val&0xff);
gainhigh=(unsigned char)((gain_val>>8)&0xff);
sensor_write(sd,0x0104,0x01);
sensor_write(sd, 0x0205, gainlow);
sensor_write(sd, 0x0204, gainhigh);
sensor_write(sd,0x0104,0x00);
// sensor_write(sd, 0xb7, anagmax);
printk("s5k5e2yx set_gain = %d\n", gain_val);
info->gain = gain_val;
return 0;
}
static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off)
{
int ret;
data_type rdval;
ret=sensor_read(sd, 0x0100, &rdval);
printk("sensor read 0x0100 value is 0x%x",rdval);
if(ret!=0)
return ret;
if(on_off==CSI_GPIO_LOW)//sw stby on
{
ret=sensor_write(sd, 0x0100, rdval&0xfe);
}
else//sw stby off
{
ret=sensor_write(sd, 0x0100, rdval|0x01);
}
return ret;
}
/*
* Stuff that knows about the sensor.
*/
static int sensor_power(struct v4l2_subdev *sd, int on)
{
int ret;
ret = 0;
switch(on)
{
case CSI_SUBDEV_STBY_ON:
vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n");
ret = sensor_s_sw_stby(sd, 1);
if(ret < 0)
vfe_dev_err("soft stby falied!\n");
usleep_range(10000,12000);
cci_lock(sd);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
cci_unlock(sd);
vfe_set_mclk(sd,OFF);
break;
case CSI_SUBDEV_STBY_OFF:
vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n");
cci_lock(sd);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(10000,12000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
usleep_range(10000,12000);
cci_unlock(sd);
ret = sensor_s_sw_stby(sd, 0);
if(ret < 0)
vfe_dev_err("soft stby off falied!\n");
usleep_range(10000,12000);
break;
case CSI_SUBDEV_PWR_ON:
vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n");
cci_lock(sd);
vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output
vfe_gpio_set_status(sd,RESET,1);//set the gpio to output
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(1000,1200);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(10000,12000);
vfe_set_pmu_channel(sd,IOVDD,ON);
vfe_set_pmu_channel(sd,AVDD,ON);
vfe_set_pmu_channel(sd,DVDD,ON);
vfe_set_pmu_channel(sd,AFVDD,ON);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
usleep_range(10000,12000);
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(30000,31000);
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_OFF:
vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n");
cci_lock(sd);
vfe_set_mclk(sd,OFF);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
vfe_set_pmu_channel(sd,DVDD,OFF);
vfe_set_pmu_channel(sd,AVDD,OFF);
vfe_set_pmu_channel(sd,IOVDD,OFF);
vfe_set_pmu_channel(sd,AFVDD,OFF);
//vfe_gpio_set_status(sd,RESET,0);//set the gpio to input
//vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input
cci_unlock(sd);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_reset(struct v4l2_subdev *sd, u32 val)
{
switch(val)
{
case 0:
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(10000,12000);
break;
case 1:
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(10000,12000);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_detect(struct v4l2_subdev *sd)
{
data_type rdval;
sensor_read(sd, 0x0000, &rdval);
printk("0x0000=0x%x\n",rdval);
if(rdval != 0x5e)
return -ENODEV;
sensor_read(sd, 0x0001, &rdval);
printk("0x0001=0x%x\n",rdval);
if(rdval != 0x20)
return -ENODEV;
return 0;
}
static int sensor_init(struct v4l2_subdev *sd, u32 val)
{
int ret;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_init\n");
/*Make sure it is a target sensor*/
ret = sensor_detect(sd);
if (ret) {
vfe_dev_err("chip found is not an target chip.\n");
return ret;
}
vfe_get_standby_mode(sd,&info->stby_mode);
if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \
&& info->init_first_flag == 0) {
vfe_dev_print("stby_mode and init_first_flag = 0\n");
return 0;
}
info->focus_status = 0;
info->low_speed = 0;
info->width = QSXGA_WIDTH;
info->height = QSXGA_HEIGHT;
info->hflip = 0;
info->vflip = 0;
info->gain = 0;
info->tpf.numerator = 1;
info->tpf.denominator = 15; /* 30fps */
ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs));
if(ret < 0) {
vfe_dev_err("write sensor_default_regs error\n");
return ret;
}
if(info->stby_mode == 0)
info->init_first_flag = 0;
info->preview_first_flag = 1;
return 0;
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
int ret=0;
struct sensor_info *info = to_state(sd);
switch(cmd) {
case GET_CURRENT_WIN_CFG:
if(info->current_wins != NULL)
{
memcpy( arg,
info->current_wins,
sizeof(struct sensor_win_size) );
ret=0;
}
else
{
vfe_dev_err("empty wins!\n");
ret=-1;
}
break;
case ISP_SET_EXP_GAIN:
ret = sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg);
break;
default:
return -EINVAL;
}
return ret;
}
/*
* Store information about the video data format.
*/
static struct sensor_format_struct {
__u8 *desc;
//__u32 pixelformat;
enum v4l2_mbus_pixelcode mbus_code;
struct regval_list *regs;
int regs_size;
int bpp; /* Bytes per pixel */
}sensor_formats[] = {
{
.desc = "Raw RGB Bayer",
.mbus_code = V4L2_MBUS_FMT_SGRBG10_10X1,
.regs = sensor_fmt_raw,
.regs_size = ARRAY_SIZE(sensor_fmt_raw),
.bpp = 1
},
};
#define N_FMTS ARRAY_SIZE(sensor_formats)
/*
* Then there is the issue of window sizes. Try to capture the info here.
*/
static struct sensor_win_size sensor_win_sizes[] = {
/* qsxga: 2576*1936 */
{
.width = 2560,//QSXGA_WIDTH,
.height = 1920,//QSXGA_HEIGHT,
.hoffset = 0,//(2576-2560)/2,//(2608-2592)/2,
.voffset = 0,//(1936-1440)/2,//(1960-1936)/2,
.hts = 2900,//must over 2738, limited by sensor
.vts = 1958,
.pclk = 170*1000*1000,//(89*1000*1000+500*1000),
.mipi_bps = (859*1000*1000+600*1000)/1,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 3<<4,
.intg_max = (1959-8)<<4,
.gain_min = 1<<4,
.gain_max = 16<<4,
.regs = sensor_qsxga_regs,
.regs_size = ARRAY_SIZE(sensor_qsxga_regs),
.set_size = NULL,
},
};
#define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes))
static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index,
enum v4l2_mbus_pixelcode *code)
{
if (index >= N_FMTS)
return -EINVAL;
*code = sensor_formats[index].mbus_code;
return 0;
}
static int sensor_enum_size(struct v4l2_subdev *sd,
struct v4l2_frmsizeenum *fsize)
{
if(fsize->index > N_WIN_SIZES-1)
return -EINVAL;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = sensor_win_sizes[fsize->index].width;
fsize->discrete.height = sensor_win_sizes[fsize->index].height;
return 0;
}
static int sensor_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
struct sensor_format_struct **ret_fmt,
struct sensor_win_size **ret_wsize)
{
int index;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
for (index = 0; index < N_FMTS; index++)
if (sensor_formats[index].mbus_code == fmt->code)
break;
if (index >= N_FMTS)
return -EINVAL;
if (ret_fmt != NULL)
*ret_fmt = sensor_formats + index;
/*
* Fields: the sensor devices claim to be progressive.
*/
fmt->field = V4L2_FIELD_NONE;
/*
* Round requested image size down to the nearest
* we support, but not below the smallest.
*/
for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++)
if (fmt->width >= wsize->width && fmt->height >= wsize->height)
break;
if (wsize >= sensor_win_sizes + N_WIN_SIZES)
wsize--; /* Take the smallest one */
if (ret_wsize != NULL)
*ret_wsize = wsize;
/*
* Note the size we'll actually handle.
*/
fmt->width = wsize->width;
fmt->height = wsize->height;
info->current_wins = wsize;
return 0;
}
static int sensor_try_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
return sensor_try_fmt_internal(sd, fmt, NULL, NULL);
}
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->type = V4L2_MBUS_CSI2;
cfg->flags = 0|V4L2_MBUS_CSI2_2_LANE|V4L2_MBUS_CSI2_CHANNEL_0;
return 0;
}
/*
* Set a format.
*/
static int sensor_s_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
int ret;
struct sensor_format_struct *sensor_fmt;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_fmt\n");
LOG_ERR_RET(sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs)) );
ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize);
if (ret)
return ret;
if(info->capture_mode == V4L2_MODE_VIDEO)
{
//video
}
else if(info->capture_mode == V4L2_MODE_IMAGE)
{
//image
}
sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size);
ret = 0;
if (wsize->regs)
LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size))
if (wsize->set_size)
LOG_ERR_RET(wsize->set_size(sd))
info->fmt = sensor_fmt;
info->width = wsize->width;
info->height = wsize->height;
s5k5e2_sensor_vts = wsize->vts;
vfe_dev_print("s_fmt set width = %d, height = %d\n",wsize->width,wsize->height);
if(info->capture_mode == V4L2_MODE_VIDEO)
{
//video
} else {
//capture image
}
return 0;
}
/*
* Implement G/S_PARM. There is a "high quality" mode we could try
* to do someday; for now, we just do the frame rate tweak.
*/
static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
cp->capturemode = info->capture_mode;
return 0;
}
static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_parm\n");
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (info->tpf.numerator == 0)
return -EINVAL;
info->capture_mode = cp->capturemode;
return 0;
}
static int sensor_queryctrl(struct v4l2_subdev *sd,
struct v4l2_queryctrl *qc)
{
/* Fill in min, max, step and default value for these controls. */
/* see include/linux/videodev2.h for details */
switch (qc->id) {
case V4L2_CID_GAIN:
return v4l2_ctrl_query_fill(qc, 1*32, 16*32, 1, 32);
case V4L2_CID_EXPOSURE:
return v4l2_ctrl_query_fill(qc, 3*16, 65535*16, 1, 3*16);
}
return -EINVAL;
}
static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_g_gain(sd, &ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_g_exp(sd, &ctrl->value);
}
return -EINVAL;
}
static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct v4l2_queryctrl qc;
int ret;
qc.id = ctrl->id;
ret = sensor_queryctrl(sd, &qc);
if (ret < 0) {
return ret;
}
if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) {
vfe_dev_err("max gain qurery is %d,min gain qurey is %d\n",qc.maximum,qc.minimum);
return -ERANGE;
}
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_s_gain(sd, ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_s_exp(sd, ctrl->value);
}
return -EINVAL;
}
static int sensor_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.g_chip_ident = sensor_g_chip_ident,
.g_ctrl = sensor_g_ctrl,
.s_ctrl = sensor_s_ctrl,
.queryctrl = sensor_queryctrl,
.reset = sensor_reset,
.init = sensor_init,
.s_power = sensor_power,
.ioctl = sensor_ioctl,
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.enum_mbus_fmt = sensor_enum_fmt,
.enum_framesizes = sensor_enum_size,
.try_mbus_fmt = sensor_try_fmt,
.s_mbus_fmt = sensor_s_fmt,
.s_parm = sensor_s_parm,
.g_parm = sensor_g_parm,
.g_mbus_config = sensor_g_mbus_config,
};
static const struct v4l2_subdev_ops sensor_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
};
/* ----------------------------------------------------------------------- */
static struct cci_driver cci_drv = {
.name = SENSOR_NAME,
.addr_width = CCI_BITS_16,
.data_width = CCI_BITS_8,
};
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
struct sensor_info *info;
info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
sd = &info->sd;
glb_sd = sd;
cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv);
info->fmt = &sensor_formats[0];
info->af_first_flag = 1;
info->init_first_flag = 1;
return 0;
}
static int sensor_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd;
sd = cci_dev_remove_helper(client, &cci_drv);
kfree(to_state(sd));
return 0;
}
static const struct i2c_device_id sensor_id[] = {
{SENSOR_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, sensor_id);
static struct i2c_driver sensor_driver = {
.driver = {
.owner = THIS_MODULE,
.name = SENSOR_NAME,
},
.probe = sensor_probe,
.remove = sensor_remove,
.id_table = sensor_id,
};
static __init int init_sensor(void)
{
return cci_dev_init_helper(&sensor_driver);
}
static __exit void exit_sensor(void)
{
cci_dev_exit_helper(&sensor_driver);
}
module_init(init_sensor);
module_exit(exit_sensor);