oleavr-rgl-a500-mini-linux-.../drivers/media/platform/sunxi-vfe/device/sp2508.c
Ole André Vadla Ravnås 169c65d57e Initial commit
2022-05-07 01:01:45 +02:00

851 lines
19 KiB
C
Executable file

/*
* A V4L2 driver for superpix sp2508 cameras.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/clk.h>
#include <media/v4l2-device.h>
#include <media/v4l2-chip-ident.h>
#include <media/v4l2-mediabus.h>
#include <linux/io.h>
#include "camera.h"
#include "sensor_helper.h"
MODULE_AUTHOR("Chomoly");
MODULE_DESCRIPTION("A low-level driver for superpix sp2508 sensors");
MODULE_LICENSE("GPL");
//for internel driver debug
#define DEV_DBG_EN 0
#if(DEV_DBG_EN == 1)
#define vfe_dev_dbg(x,arg...) printk("[sp2508]"x,##arg)
#else
#define vfe_dev_dbg(x,arg...)
#endif
#define vfe_dev_err(x,arg...) printk("[sp2508]"x,##arg)
#define vfe_dev_print(x,arg...) printk("[sp2508]"x,##arg)
#define LOG_ERR_RET(x) { \
int ret; \
ret = x; \
if(ret < 0) {\
vfe_dev_err("error at %s\n",__func__); \
return ret; \
} \
}
//define module timing
#define MCLK (24*1000*1000)
#define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH
#define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH
#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING
//#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_FALLING
#define V4L2_IDENT_SENSOR 0x2508
/*
* Our nominal (default) frame rate.
*/
#define I2C_ADDR (0x78)
#define SENSOR_NAME "sp2508"
static struct v4l2_subdev *glb_sd;
static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain * exp_gain);
/*
* Information we maintain about a known sensor.
*/
struct sensor_format_struct; /* coming later */
struct cfg_array { /* coming later */
struct regval_list * regs;
int size;
};
static inline struct sensor_info *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct sensor_info, sd);
}
/*
* The default register settings
*
*/
static struct regval_list sensor_default_regs[] = {
{0xfd,0x00},//
{0x1b,0x00},//
{0x1c,0x00},//
{0x1e,0x95},//
{0x35,0x20},// ;pll bias
{0x2f,0x10},//3b/*08*/},// ;pll clk 60M
{0x34,0x01},//01},
{0xfd,0x01},//
{0x03,0x02},// ;exp time, 3 base
{0x04,0x2b},//
{0x06,0x08},// ;vblank
{0x24,0x60},// ;pga gain 6x
{0x01,0x01},// ;enable reg write
{0x2b,0xc5},// ;readout vref
{0x2e,0x20},// ;dclk delay
{0x79,0x42},// ;p39 p40
{0x85,0x0f},// ;p51
{0x09,0x03},// ;hblank
{0x0a,0x00},//
{0x1e,0x82},//
{0x21,0xef},// ;pcp tx 4.05v
{0x25,0xf2},// ;reg dac 2.7v, enable bl_en,vbl 1.4v
{0x26,0x00},// ;vref2 1v, disable ramp driver
{0x2a,0xea},// ;bypass dac res, adc range 0.745, vreg counter 0.9
{0x2c,0xf0},// ;high 8bit, pldo 2.7v
{0x8a,0x55},// ;pixel bias 1uA
{0x8b,0x55},//
{0x19,0xf3},// ;icom1 1.7u, icom2 0.6u
{0x3c,0x02},//
{0x0e,0x04},// ;4 sample
{0x0f,0x04},//
{0x11,0x60},// ;rst num
{0xd0,0x00},// ;disable boost
{0x55,0x20},//
{0x58,0x4d},//
{0x5d,0x15},//
{0x5e,0x05},//
{0x64,0x40},//
{0x65,0x00},//
{0x66,0x66},//
{0x67,0x00},//
{0x68,0x68},//
{0x72,0x70},//
{0x75,0x60},//
{0xfb,0x25},//
{0xfd,0x02},// ;raw data digital gain
{0x00,0x84},//
{0x01,0x84},//
{0x03,0x84},//
{0x04,0x84},//
};
static struct regval_list sensor_uxga_regs[] = { //UXGA: 1600*1200
{0xfd,0x00},
{0x1b,0x00},
{0x1c,0x00},
{0x30,0x05},
{0x1e,0x55},
{0xfd,0x01},
{0x31,0x00},
{0x0d,0x00},//add
{0x1e,0x8b},
{0x01,0x01},
};
static struct regval_list sensor_720p_regs[] = { //1280*720
{0xfd,0x00},
{0x1b,0x00},
{0x1c,0x00},
{0x30,0x05},
{0xfd,0x01},
{0x31,0x10},
{0x01,0x01},
};
static struct regval_list sensor_sxga_regs[] = { //SXGA: 1280*960
};
static struct regval_list sensor_fmt_raw[] = {
};
static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain *exp_gain)
{
int exp_val, gain_val;
unsigned char explow=0,expmid=0;//,exphigh=0,vts_diff_low,vts_diff_high;
unsigned char gainlow=0;//,gainhigh=0;
struct sensor_info *info = to_state(sd);
exp_val = exp_gain->exp_val;
gain_val = exp_gain->gain_val;
if(gain_val<1*16)
gain_val=16;
if(gain_val>64*16-1)
gain_val=64*16-1;
if(exp_val>0xfffff)
exp_val=0xfffff;
gainlow=(unsigned char)(gain_val&0xff);
expmid = (unsigned char) ( (0x0ff000&exp_val)>>12);
explow = (unsigned char) ( (0x000ff0&exp_val)>>4);
sensor_write(sd, 0xfd, 0x01);
sensor_write(sd, 0x24, gainlow*2);
sensor_write(sd, 0x03, expmid);
sensor_write(sd, 0x04, explow);
sensor_write(sd, 0x01, 0x01);
printk("exp=%d,gain=%d\n",exp_val,gainlow*2);
info->exp = exp_val;
info->gain = gain_val;
return 0;
}
static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->exp;
vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp);
return 0;
}
static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val)
{
unsigned char expmid=0,explow=0;
struct sensor_info *info = to_state(sd);
sensor_write(sd, 0xfd, 0x01);
expmid = (unsigned char) ( (0x0ff000&exp_val)>>12);
explow = (unsigned char) ( (0x000ff0&exp_val)>>4);
sensor_write(sd, 0x03, expmid);
sensor_write(sd, 0x04, explow);
sensor_write(sd, 0x01, 0x01);
info->exp = exp_val;
return 0;
}
static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->gain;
vfe_dev_dbg("sensor_get_gain = %d\n", info->gain);
return 0;
}
static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val)
{
unsigned char gainlow;
gainlow=(unsigned char)(gain_val&0xff);
sensor_write(sd, 0xfd, 0x01);//enter group write
sensor_write(sd, 0x24, gainlow*2);
sensor_write(sd, 0x01, 0x01);//end group write
printk("sp2508 sensor gain value is %d\n",gain_val);
return 0;
}
static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off)
{
int ret;
data_type rdval;
ret=sensor_read(sd, 0xfc, &rdval);
if(ret!=0)
return ret;
if(on_off==CSI_GPIO_HIGH)//sw stby on
{
ret=sensor_write(sd, 0xfc, rdval | 0x01);
sensor_write(sd, 0xf2, 0x00);
}
else//sw stby off
{
sensor_write(sd, 0xfc, rdval & 0xfe);
ret=sensor_write(sd, 0xf2, 0xff);
}
return ret;
//return 0;
}
/*
* Stuff that knows about the sensor.
*/
static int sensor_power(struct v4l2_subdev *sd, int on)
{
cci_lock(sd);
switch(on)
{
case CSI_SUBDEV_STBY_ON:
vfe_dev_dbg("CSI_SUBDEV_STBY_ON\n");
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(30000,31000);
vfe_set_mclk(sd,OFF);
usleep_range(10000,12000);
break;
case CSI_SUBDEV_STBY_OFF:
vfe_dev_dbg("CSI_SUBDEV_STBY_OFF\n");
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(30000,31000);
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(30000,31000);
break;
case CSI_SUBDEV_PWR_ON:
vfe_dev_dbg("CSI_SUBDEV_PWR_ON\n");
vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output
vfe_gpio_set_status(sd,RESET,1);//set the gpio to output
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(1000,1200);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(10000,12000);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH);
vfe_set_pmu_channel(sd,AVDD,ON);
vfe_set_pmu_channel(sd,IOVDD,ON);
vfe_set_pmu_channel(sd,DVDD,ON);
vfe_set_pmu_channel(sd,AFVDD,ON);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
usleep_range(10000,12000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
usleep_range(10000,12000);
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(30000,31000);
break;
case CSI_SUBDEV_PWR_OFF:
vfe_dev_dbg("CSI_SUBDEV_PWR_OFF\n");
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
usleep_range(10000,12000);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(10000,12000);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW);
vfe_set_pmu_channel(sd,AFVDD,OFF);
vfe_set_pmu_channel(sd,DVDD,OFF);
vfe_set_pmu_channel(sd,AVDD,OFF);
vfe_set_pmu_channel(sd,IOVDD,OFF);
usleep_range(10000,12000);
vfe_set_mclk(sd,OFF);
vfe_gpio_set_status(sd,RESET,0);//set the gpio to input
vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input
break;
default:
return -EINVAL;
}
cci_unlock(sd);
return 0;
}
static int sensor_reset(struct v4l2_subdev *sd, u32 val)
{
switch(val)
{
case 0:
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(10000,12000);
break;
case 1:
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(10000,12000);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_detect(struct v4l2_subdev *sd)
{
data_type rdval;
LOG_ERR_RET(sensor_read(sd, 0x02, &rdval))
// vfe_dev_dbg("0x0000=0x%x\n",rdval);
if(rdval != 0x25)
return -ENODEV;
LOG_ERR_RET(sensor_read(sd, 0x03, &rdval))
// vfe_dev_dbg("0x0001=0x%x\n",rdval);
if(rdval != 0x08)
return -ENODEV;
return 0;
}
static int sensor_init(struct v4l2_subdev *sd, u32 val)
{
int ret;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_init\n");
/*Make sure it is a target sensor*/
// ret = sensor_detect(sd);
// if (ret) {
// vfe_dev_err("chip found is not an target chip.\n");
// return ret;
// }
vfe_get_standby_mode(sd,&info->stby_mode);
if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \
&& info->init_first_flag == 0) {
vfe_dev_print("stby_mode and init_first_flag = 0\n");
return 0;
}
info->focus_status = 0;
info->low_speed = 0;
info->width = UXGA_WIDTH;
info->height = UXGA_HEIGHT;
info->hflip = 0;
info->vflip = 0;
info->gain = 0;
info->tpf.numerator = 1;
info->tpf.denominator = 30; /* 30fps */
ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs));
if(ret < 0) {
vfe_dev_err("write sensor_default_regs error\n");
return ret;
}
if(info->stby_mode == 0)
info->init_first_flag = 0;
info->preview_first_flag = 1;
return 0;
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
int ret=0;
struct sensor_info *info = to_state(sd);
switch(cmd) {
case GET_CURRENT_WIN_CFG:
if(info->current_wins != NULL)
{
memcpy( arg,
info->current_wins,
sizeof(struct sensor_win_size) );
ret=0;
}
else
{
vfe_dev_err("empty wins!\n");
ret=-1;
}
break;
case SET_FPS:
break;
case ISP_SET_EXP_GAIN:
sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg);
break;
default:
return -EINVAL;
}
return ret;
}
/*
* Store information about the video data format.
*/
static struct sensor_format_struct {
__u8 *desc;
//__u32 pixelformat;
enum v4l2_mbus_pixelcode mbus_code;
struct regval_list *regs;
int regs_size;
int bpp; /* Bytes per pixel */
}sensor_formats[] = {
{
.desc = "Raw RGB Bayer",
.mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,
.regs = sensor_fmt_raw,
.regs_size = ARRAY_SIZE(sensor_fmt_raw),
.bpp = 1
},
};
#define N_FMTS ARRAY_SIZE(sensor_formats)
/*
* Then there is the issue of window sizes. Try to capture the info here.
*/
static struct sensor_win_size sensor_win_sizes[] = {
/* UXGA */
{
.width = UXGA_WIDTH,
.height = UXGA_HEIGHT,
.hoffset = 0,
.voffset = 0,
.hts = 3205,
.vts = 1224,
.pclk = 82*1000*1000,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 1<<4,
.intg_max = 1224<<4,
.gain_min = 1<<4,
.gain_max = (7<<4),
.regs = sensor_uxga_regs,
.regs_size = ARRAY_SIZE(sensor_uxga_regs),
.set_size = NULL,
},
{
.width = HD720_WIDTH,
.height = HD720_HEIGHT,
.hoffset = 0,
.voffset = 0,
.hts = 3300,//1646,//1616,
.vts = 736,//754,//764,
.pclk = 60*1000*1000,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 1<<4,
.intg_max = 736<<4,
.gain_min = 1<<4,
.gain_max = (8<<4)-1,
.regs = sensor_720p_regs,//
.regs_size = ARRAY_SIZE(sensor_720p_regs),//
.set_size = NULL,
},
};
#define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes))
static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index,
enum v4l2_mbus_pixelcode *code)
{
if (index >= N_FMTS)
return -EINVAL;
*code = sensor_formats[index].mbus_code;
return 0;
}
static int sensor_enum_size(struct v4l2_subdev *sd,
struct v4l2_frmsizeenum *fsize)
{
if(fsize->index > N_WIN_SIZES-1)
return -EINVAL;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = sensor_win_sizes[fsize->index].width;
fsize->discrete.height = sensor_win_sizes[fsize->index].height;
return 0;
}
static int sensor_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
struct sensor_format_struct **ret_fmt,
struct sensor_win_size **ret_wsize)
{
int index;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
for (index = 0; index < N_FMTS; index++)
if (sensor_formats[index].mbus_code == fmt->code)
break;
if (index >= N_FMTS)
return -EINVAL;
if (ret_fmt != NULL)
*ret_fmt = sensor_formats + index;
/*
* Fields: the sensor devices claim to be progressive.
*/
fmt->field = V4L2_FIELD_NONE;
/*
* Round requested image size down to the nearest
* we support, but not below the smallest.
*/
for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++)
if (fmt->width >= wsize->width && fmt->height >= wsize->height)
break;
if (wsize >= sensor_win_sizes + N_WIN_SIZES)
wsize--; /* Take the smallest one */
if (ret_wsize != NULL)
*ret_wsize = wsize;
/*
* Note the size we'll actually handle.
*/
fmt->width = wsize->width;
fmt->height = wsize->height;
info->current_wins = wsize;
return 0;
}
static int sensor_try_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
return sensor_try_fmt_internal(sd, fmt, NULL, NULL);
}
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->type = V4L2_MBUS_PARALLEL;
cfg->flags = V4L2_MBUS_MASTER | VREF_POL | HREF_POL | CLK_POL ;
return 0;
}
/*
* Set a format.
*/
static int sensor_s_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
int ret;
struct sensor_format_struct *sensor_fmt;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_fmt\n");
ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize);
if (ret)
return ret;
if(info->capture_mode == V4L2_MODE_VIDEO)
{
//video
}
else if(info->capture_mode == V4L2_MODE_IMAGE)
{
//image
}
sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size);
ret = 0;
if (wsize->regs)
LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size))
if (wsize->set_size)
LOG_ERR_RET(wsize->set_size(sd))
info->fmt = sensor_fmt;
info->width = wsize->width;
info->height = wsize->height;
vfe_dev_print("s_fmt set width = %d, height = %d\n",wsize->width,wsize->height);
usleep_range(500000,600000);
return 0;
}
/*
* Implement G/S_PARM. There is a "high quality" mode we could try
* to do someday; for now, we just do the frame rate tweak.
*/
static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
cp->capturemode = info->capture_mode;
return 0;
}
static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_parm\n");
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (info->tpf.numerator == 0)
return -EINVAL;
info->capture_mode = cp->capturemode;
return 0;
}
static int sensor_queryctrl(struct v4l2_subdev *sd,
struct v4l2_queryctrl *qc)
{
/* Fill in min, max, step and default value for these controls. */
/* see include/linux/videodev2.h for details */
switch (qc->id) {
case V4L2_CID_GAIN:
return v4l2_ctrl_query_fill(qc, 1*16, 32*16, 1, 1*16);
case V4L2_CID_EXPOSURE:
return v4l2_ctrl_query_fill(qc, 0, 8192*16, 1, 0);
case V4L2_CID_FRAME_RATE:
return v4l2_ctrl_query_fill(qc, 15, 120, 1, 120);
}
return -EINVAL;
}
static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_g_gain(sd, &ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_g_exp(sd, &ctrl->value);
}
return -EINVAL;
}
static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct v4l2_queryctrl qc;
int ret;
qc.id = ctrl->id;
ret = sensor_queryctrl(sd, &qc);
if (ret < 0) {
return ret;
}
if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) {
vfe_dev_err("max gain qurery is %d,min gain qurey is %d\n",qc.maximum,qc.minimum);
return -ERANGE;
}
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_s_gain(sd, ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_s_exp(sd, ctrl->value);
}
return -EINVAL;
}
static int sensor_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.g_chip_ident = sensor_g_chip_ident,
.g_ctrl = sensor_g_ctrl,
.s_ctrl = sensor_s_ctrl,
.queryctrl = sensor_queryctrl,
.reset = sensor_reset,
.init = sensor_init,
.s_power = sensor_power,
.ioctl = sensor_ioctl,
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.enum_mbus_fmt = sensor_enum_fmt,
.enum_framesizes = sensor_enum_size,
.try_mbus_fmt = sensor_try_fmt,
.s_mbus_fmt = sensor_s_fmt,
.s_parm = sensor_s_parm,
.g_parm = sensor_g_parm,
.g_mbus_config = sensor_g_mbus_config,
};
static const struct v4l2_subdev_ops sensor_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
};
/* ----------------------------------------------------------------------- */
static struct cci_driver cci_drv = {
.name = SENSOR_NAME,
.addr_width = CCI_BITS_8,
.data_width = CCI_BITS_8,
};
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
struct sensor_info *info;
info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
sd = &info->sd;
glb_sd = sd;
cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv);
info->fmt = &sensor_formats[0];
info->af_first_flag = 1;
info->init_first_flag = 1;
return 0;
}
static int sensor_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd;
sd = cci_dev_remove_helper(client, &cci_drv);
kfree(to_state(sd));
return 0;
}
static const struct i2c_device_id sensor_id[] = {
{SENSOR_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, sensor_id);
static struct i2c_driver sensor_driver = {
.driver = {
.owner = THIS_MODULE,
.name = SENSOR_NAME,
},
.probe = sensor_probe,
.remove = sensor_remove,
.id_table = sensor_id,
};
static __init int init_sensor(void)
{
return cci_dev_init_helper(&sensor_driver);
}
static __exit void exit_sensor(void)
{
cci_dev_exit_helper(&sensor_driver);
}
module_init(init_sensor);
module_exit(exit_sensor);